• Neuroscience · Jun 2011

    Postsynaptic targets of GABAergic basal forebrain projections to the basolateral amygdala.

    • A J McDonald, J F Muller, and F Mascagni.
    • Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208, USA. alexander.mcdonald@uscmed.sc.edu
    • Neuroscience. 2011 Jun 2; 183: 144159144-59.

    AbstractRecent studies indicate that the basolateral amygdala, like the neocortex and hippocampus, receives GABAergic inputs from the basal forebrain in addition to the well-established cholinergic inputs. Since the neuronal targets of these inputs have yet to be determined, it is difficult to predict the functional significance of this innervation. The present study addressed this question in the rat by employing anterograde tract tracing combined with immunohistochemistry at the light and electron microscopic levels of analysis. Amygdalopetal axons from the basal forebrain mainly targeted the basolateral nucleus (BL) of the amygdala. The morphology of these axons was heterogeneous and included GABAergic axons that contained vesicular GABA transporter protein (VGAT). These axons, designated type 1, exhibited distinctive large axonal varicosities that were typically clustered along the length of the axon. Type 1 axons formed multiple contacts with the cell bodies and dendrites of parvalbumin-containing (PV+) interneurons, but relatively few contacts with calretinin-containing and somatostatin-containing interneurons. At the ultrastructural level of analysis, the large terminals of type 1 axons exhibited numerous mitochondria and were densely packed with synaptic vesicles. Individual terminals formed broad symmetrical synapses with BL PV+ interneurons, and often formed additional symmetrical synapses with BL pyramidal cells. Some solitary type 1 terminals formed symmetrical synapses solely with BL pyramidal cells. These results suggest that GABAergic neurons of the basal forebrain provide indirect disinhibition, as well as direct inhibition, of BL pyramidal neurons. The possible involvement of these circuits in rhythmic oscillations related to emotional learning, attention, and arousal is discussed.Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.