• Neuroscience · Jan 2021

    Postweaning enriched environment enhances cognitive function and brain-derived neurotrophic factor signaling in the hippocampus in maternally separated rats.

    • Cordier Javier Maximiliano JM Instituto de Diversidad y Ecología Animal (IDEA), Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad Nacional de Có, Julieta Paola Aguggia, Víctor Danelon, Mir Franco Rafael FR Cátedra de Fisiología Animal, Departamento de Ciencias Exactas Físicas y Naturales, Universidad Nacional de La Rioja, Av. Luis M. de la Fuente S/N, C, María Angélica Rivarola, and Daniel Mascó.
    • Instituto de Diversidad y Ecología Animal (IDEA), Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad Nacional de Córdoba -Córdoba, Argentina.
    • Neuroscience. 2021 Jan 15; 453: 138-147.

    AbstractAdverse environments during early life may lead to different neurophysiological and behavioral consequences, including depression and learning and memory deficits that persist into adulthood. Previously, we demonstrated that exposure to an enriched environment during adolescence mitigates the cognitive impairment observed after maternal separation in a task-specific manner. However, underlying neural mechanisms are still not fully understood. The current study examines the effects of neonatal maternal separation (MS) and postweaning environmental enrichment (EE) on spatial learning and memory performance in a short version of the Barnes Maze, active and passive behaviors in the forced swim test, and on TrkB/BDNF receptor expression in the hippocampus. Our results revealed that MS impaired acquisition learning and that enriched rats performed better than non-enriched rats in acquisition trials, regardless of early conditions. During the probe, enriched-housed rats demonstrated better performance than those reared in standard conditions. No significant differences between groups were found in the forced swim test. Both MS and EE increase full-length TrkB expression, and the combination of MS and EE treatment caused the highest levels of this protein expression. Similarly, truncated TrkB expression was higher in the MS/EE group. Animal facility rearing (AFR) non-enriched groups present the lowest activation of phosphorylated Erk, a canonical downstream kinase of TrkB signaling. Taken together, our results demonstrate the importance of enriched environment as an intervention to ameliorate the effects of maternal separation on spatial learning and memory. TrkB/BDNF signaling could mediate neuroplastic changes related to learning and memory during exposure to enriched environment.Copyright © 2020 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.