• Spine · Feb 2021

    Case Reports

    Accuracy of Patient-Specific 3D-Printed Drill Guides for Pedicle and Lateral Mass Screw Insertion: An Analysis of 76 Cervical and Thoracic Screw Trajectories.

    • Peter A J Pijpker, Joep Kraeima, Max J H Witjes, OterdoomD L MarinusDLMUniversity of Groningen, University Medical Center Groningen, Department of Neurosurgery, Groningen, The Netherlands., Rob A Vergeer, Maarten H Coppes, GroenRob J MRJMUniversity of Groningen, University Medical Center Groningen, Department of Neurosurgery, Groningen, The Netherlands., and KuijlenJos M AJMAUniversity of Groningen, University Medical Center Groningen, Department of Neurosurgery, Groningen, The Netherlands..
    • University of Groningen, University Medical Center Groningen, Department of Neurosurgery, Groningen, The Netherlands.
    • Spine. 2021 Feb 1; 46 (3): 160168160-168.

    Study DesignSingle-center retrospective case series.ObjectiveThe purpose of this study was to assess the safety and accuracy of three-dimensional (3D)-printed individualized drill guides for pedicle and lateral mass screw insertion in the cervical and upper-thoracic region, by comparing the preoperative 3D surgical plan with the postoperative results.Summary Of Background DataPosterior spinal fusion surgery can provide rigid intervertebral fixation but screw misplacement involves a high risk of neurovascular injury. However, modern spine surgeons now have tools such as virtual surgical planning and 3D-printed drill guides to facilitate spinal screw insertion.MethodsA total of 15 patients who underwent posterior spinal fusion surgery involving patient-specific 3D-printed drill guides were included in this study. After segmentation of bone and screws, the postoperative models were superimposed onto the preoperative surgical plan. The accuracy of the realized screw trajectories was quantified by measuring the entry point and angular deviation.ResultsThe 3D deviation analysis showed that the entry point and angular deviation over all 76 screw trajectories were 1.40 ± 0.81 mm and 6.70 ± 3.77°, respectively. Angular deviation was significantly higher in the sagittal plane than in the axial plane (P = 0.02). All screw positions were classified as "safe" (100%), showing no neurovascular injury, facet joint violation, or violation of the pedicle wall.Conclusions3D virtual planning and 3D-printed patient-specific drill guides appear to be safe and accurate for pedicle and lateral mass screw insertion in the cervical and upper-thoracic spine. The quantitative 3D deviation analyses confirmed that screw positions were accurate with respect to the 3D-surgical plan.Level of Evidence: 4.Copyright © 2020 The Author(s). Published by Wolters Kluwer Health, Inc.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…