• J Neuroimaging · Mar 2021

    Review

    Neural Mechanisms of Paroxysmal Kinesigenic Dyskinesia: Insights from Neuroimaging.

    • Wei Liu, Yan Xiao, Ting Zheng, and Guangxiang Chen.
    • Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
    • J Neuroimaging. 2021 Mar 1; 31 (2): 272-276.

    AbstractParoxysmal kinesigenic dyskinesia (PKD) is a rare movement disorder of the nervous system, and little is known about its pathogenesis. Currently, the diagnosis of PKD is primarily based on clinical manifestations, with little objective evidence. Neuroimaging has been used to explore the pathological changes in cerebral structure and function associated with PKD. The current review highlights recent advances in neuroimaging to provide a better understanding of the neural mechanisms and early diagnosis of this disorder. Several studies utilizing single-photon emission computed tomography (CT), positron emission tomography, and structural and functional magnetic resonance imaging have found significant localized abnormalities in the caudate nucleus, putamen, pallidum, thalamus, and frontoparietal cortex in PKD patients. These studies have also revealed alterations in interhemispheric functional connectivity between the brain regions of bilateral cerebral hemispheres such as the putamen, primary motor cortex, supplementary motor area, dorsal lateral prefrontal cortex, and primary somatosensory cortex in these patients. In addition, proline-rich transmembrane protein 2 gene mutations can affect the functional organization of the brain in PKD. These results suggest that the neural mechanisms of PKD are associated with the disruption of both structural and/or functional properties in basal ganglia-thalamo-cortical circuitry and interhemispheric functional connectivity. PKD can be considered a circuitry/network disorder and is not restricted to localized structural and/or functional abnormalities. Multimodal neuroimaging combined with gene analysis can provide additional valuable information for a better understanding of the pathogenesis and early diagnosis of this disorder.© 2020 American Society of Neuroimaging.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.