• Neuroscience · Jan 2021

    Modelling prosaccade latencies across multiple decision-making tasks.

    • Andrew J Anderson, Nikolaos Smyrnis, Imran Noorani, and Carpenter R H S RHS Gonville & Caius College, Cambridge, UK..
    • Department of Optometry and Vision Sciences, The University of Melbourne, Parkville 3010, Australia. Electronic address: aaj@unimelb.edu.au.
    • Neuroscience. 2021 Jan 1; 452: 345-353.

    AbstractOculomotor decision making can be investigated by a simple step task, where a person decides whether a target has jumped to the left or the right. More complex tasks include the countermanding task (look at the jumped target, except when a subsequent signal instructs you not to) and the Wheeless task (where the jumped target sometimes then quickly jumps to a new location). Different instantiations of the LATER (Linear Approach to Threshold with Ergodic Rate) model have been shown to explain the saccadic latency data arising from these tasks, despite it being almost inconceivable that completely separate decision-making mechanisms exist for each. However, these models have an identical construction with regards to predicting prosaccadic responses (all step task trials, and control trials in countermanding and Wheeless tasks, where no countermanding signal is given or when the target does not make a second jump). We measured saccadic latencies for 23 human observers each performing the three tasks, and modelled prosaccade latencies with LATER to see if model parameters were usefully preserved across tasks. We found no significant difference in reaction times and model parameters between the step and Wheeless tasks (mean 175 and 177 ms, respectively; standard deviation, SD 22 and 24 ms). In contrast, we identified prolonged latencies in the countermanding tasks (236 ms; SD 37 ms) explained by a slower rise and an elevated threshold of the decision making signal, suggesting elevated participant caution. Our findings support the idea that common machinery exists for oculomotor decision-making, which can be flexibly deployed depending upon task demands.Copyright © 2020 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…