• Neuroscience · Apr 2021

    EEG decoding of dynamic facial expressions of emotion: Evidence from SSVEP and causal cortical network dynamics.

    • Meng-Yun Wang and Zhen Yuan.
    • Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China; Centre for Cognitive and Brain Sciences, University of Macau, Taipa, Macau SAR, China.
    • Neuroscience. 2021 Apr 1; 459: 50-58.

    AbstractThe neural cognitive mechanism in processing static facial expressions (FEs) has been well documented, whereas the one underlying perceiving dynamic faces remains unclear. In this study, Fourier transformation and time-frequency analysis of Electroencephalography (EEG) data were carried out to detect the brain activation underlying dynamic or static FEs while twenty-one participants were viewing dynamic or static faces flicking at 10 Hz. In particular, steady-state visual evoked potentials (SSVEPs) were quantified through spectral power analysis of EEG recordings. Besides, Granger causality (GC) analysis (GCA) was also performed to capture the causal cortical network dynamics during dynamic or static FEs of emotion. It was discovered that the dynamic (from neural to happy (N2H) or vice versa (H2N)) FEs elicited larger SSVEPs than the static ones. Additionally, GCA demonstrated that the H2N case, in which happy FEs were being gradually changed into neutral ones, exhibited larger GC measure during the late processing stage than that from the early stage. Consequently, enhanced SSVEPs and effective brain connectivity for dynamic FEs illustrated that participants might need consume more attentional resources to process the dynamic faces, particularly for the change from happy to neutral faces. The new neural index might facilitate us to better understand the cognitive processing of dynamic and static FEs.Copyright © 2021 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,706,642 articles already indexed!

We guarantee your privacy. Your email address will not be shared.