-
J. Neurol. Neurosurg. Psychiatr. · Mar 2021
MRI data-driven algorithm for the diagnosis of behavioural variant frontotemporal dementia.
- Ana L Manera, Mahsa Dadar, John Cornelis Van Swieten, Barbara Borroni, Raquel Sanchez-Valle, Fermin Moreno, Robert Laforce, Caroline Graff, Matthis Synofzik, Daniela Galimberti, James Benedict Rowe, Mario Masellis, Maria Carmela Tartaglia, Elizabeth Finger, Rik Vandenberghe, Alexandre de Mendonca, Fabrizio Tagliavini, Isabel Santana, Christopher R Butler, Alex Gerhard, Adrian Danek, Johannes Levin, Markus Otto, Giovanni Frisoni, Roberta Ghidoni, Sandro Sorbi, Jonathan Daniel Rohrer, Simon Ducharme, D Louis Collins, FTLDNI investigators, and GENFI Consortium.
- McConnell Brain Imaging Center, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada ana.manera@mcgill.ca.
- J. Neurol. Neurosurg. Psychiatr. 2021 Mar 15.
IntroductionStructural brain imaging is paramount for the diagnosis of behavioural variant of frontotemporal dementia (bvFTD), but it has low sensitivity leading to erroneous or late diagnosis.MethodsA total of 515 subjects from two different bvFTD cohorts (training and independent validation cohorts) were used to perform voxel-wise morphometric analysis to identify regions with significant differences between bvFTD and controls. A random forest classifier was used to individually predict bvFTD from deformation-based morphometry differences in isolation and together with semantic fluency. Tenfold cross validation was used to assess the performance of the classifier within the training cohort. A second held-out cohort of genetically confirmed bvFTD cases was used for additional validation.ResultsAverage 10-fold cross-validation accuracy was 89% (82% sensitivity, 93% specificity) using only MRI and 94% (89% sensitivity, 98% specificity) with the addition of semantic fluency. In the separate validation cohort of definite bvFTD, accuracy was 88% (81% sensitivity, 92% specificity) with MRI and 91% (79% sensitivity, 96% specificity) with added semantic fluency scores.ConclusionOur results show that structural MRI and semantic fluency can accurately predict bvFTD at the individual subject level within a completely independent validation cohort coming from a different and independent database.© Author(s) (or their employer(s)) 2021. No commercial re-use. See rights and permissions. Published by BMJ.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:

- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.