• Nutrition · Jul 2021

    Basic nutritional investigationShort-term nicotinamide riboside treatment improves muscle quality and function in mice and increases cellular energetics and differentiating capacity of myogenic progenitors.

    • Kenneth Ladd Seldeen, Aref Shahini, Ramkumar Thiyagarajan, Yonas Redae, Merced Leiker, Nika Rajabian, Andrew Dynka, Stelios T Andreadis, and Bruce Robert Troen.
    • Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo and Research Service, Veterans Affairs Western New York Healthcare System, Buffalo, NY, United States.
    • Nutrition. 2021 Jul 1; 87-88: 111189.

    ObjectivesNicotinamide adenine dinucleotide (NAD+), an essential cofactor for mitochondrial function, declines with aging, which may lead to impaired physical performance. Nicotinamide riboside (NR), a NAD+ precursor, restores cellular NAD+ levels. The aim of this study was to examine the effects of short-term NR supplementation on physical performance in middle-aged mice and the effects on mouse and human muscle stem cells.MethodsWe treated 15-mo-old male C57BL/6J mice with NR at 300 mg·kg·d-1 (NR3), 600 mg·kg·d-1 (NR6), or placebo (PLB), n = 8 per group, and assessed changes in physical performance, muscle histology, and NAD+ content after 4 wk of treatment.ResultsNR increased total NAD+ in muscle tissue (NR3 P = 0.01; NR6 P = 0.004, both versus PLB), enhanced treadmill endurance and open-field activity, and prevented decline in grip strength. Histologic analysis revealed NR-treated mice exhibited enlarged slow-twitch fibers (NR6 versus PLB P = 0.014; NR3 P = 0.16) and a trend toward more slow fibers (NR3 P = 0.14; NR6 P = 0.22). We next carried out experiments to characterize NR effects on mitochondrial activity and cellular energetics in vitro. We observed that NR boosted basal and maximal cellular aerobic and anaerobic respiration in both mouse and human myoblasts and human myotubes. Additionally, NR treatment improved the differentiating capacity of myoblasts and increased myotube size and fusion index upon stimulation of these progenitors to form multinucleated myotubes.ConclusionThese findings support a role for NR in improving cellular energetics and functional capacity in mice, which support the translation of this work into clinical settings as a strategy for improving and/or maintaining health span during aging.Published by Elsevier Inc.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.