• Am. J. Respir. Cell Mol. Biol. · Feb 2016

    Aberrant DNA Methylation of Phosphodiesterase [corrected] 4D Alters Airway Smooth Muscle Cell Phenotypes.

    • Amanda H Y Lin, Yan Shang, Wayne Mitzner, James S K Sham, and Wan-yee Tang.
    • 1 Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland; and.
    • Am. J. Respir. Cell Mol. Biol. 2016 Feb 1; 54 (2): 241-9.

    AbstractAirway hyperresponsiveness (AHR) is a hallmark feature in asthma characterized by exaggerated airway contractile response to stimuli due to increased airway sensitivity and chronic airway remodeling. We have previously shown that allergen-induced AHR in mice is associated with aberrant DNA methylation in the lung genome, suggesting that AHR could be epigenetically regulated, and these changes might predispose the animals to asthma. Previous studies demonstrated that overexpression of phosphodiesterase 4D (PDE4D) is associated with increased AHR. However, epigenetic regulation of this gene in asthmatic airway smooth muscle cells (ASMCs) has not been examined. In this study, we aimed to examine the relationship between epigenetic regulation of PDE4D and ASMC phenotypes. We identified CpG site-specific hypomethylation at PDE4D promoter in human asthmatic ASMCs. We next used methylated oligonucleotides to introduce CpG site-specific methylation at PDE4D promoter and examined its effect on ASMCs. We showed that PDE4D methylation decreased cell proliferation and migration of asthmatic ASMCs. We further elucidated that methylated PDE4D decreased PDE4D expression in asthmatic ASMCs, increased cAMP level, and inhibited the aberrant increase in Ca(2+) level. Moreover, PDE4D methylation reduced the phosphorylation level of downstream effectors of Ca(2+) signaling, including myosin light chain kinase and p38. Taken together, our findings demonstrate that gene-specific epigenetic changes may predispose ASMCs to asthma through alterations in cell phenotypes. Modulation of ASMC phenotypes by methylated PDE4D oligonucleotides can reverse the aberrant ASMC functions to normal phenotypes. This has provided new insight to the development of novel therapeutic options for this debilitative disease.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…