American journal of respiratory cell and molecular biology
-
Am. J. Respir. Cell Mol. Biol. · Feb 2016
ReviewRegulation and Function of the Nucleotide Binding Domain Leucine-Rich Repeat-Containing Receptor, Pyrin Domain-Containing-3 Inflammasome in Lung Disease.
Inflammasomes are specialized inflammatory signaling platforms that govern the maturation and secretion of proinflammatory cytokines, such as IL-1β and IL-18, through the regulation of caspase-1-dependent proteolytic processing. Several nucleotide binding domain leucine-rich repeat-containing receptor (NLR) family members (i.e., NLR family, pyrin domain containing [NLRP] 1, NLRP3, and NLR family, caspase recruitment domain containing-4 [NLRC4]) as well as the pyrin and hemopoietic expression, interferon-inducibility, nuclear localization domain-containing family member, absent in melanoma 2, can form inflammasome complexes in human cells. In particular, the NLRP3 inflammasome is activated in response to cellular stresses through a two-component pathway, involving Toll-like receptor 4-ligand interaction (priming) followed by a second signal, such as ATP-dependent P2X purinoreceptor 7 receptor activation. ⋯ In addition, pyroptosis, an inflammasome-associated mode of cell death, contributes to host defense. Recent research has described the regulation and function of the NLRP3 inflammasome in various pulmonary diseases, including acute lung injury and acute respiratory distress syndrome, sepsis, respiratory infections, chronic obstructive pulmonary disease, asthma, pulmonary hypertension, cystic fibrosis, and idiopathic pulmonary fibrosis. The NLRP3 and related inflammasomes, and their regulated cytokines or receptors, may represent novel diagnostic or therapeutic targets in pulmonary diseases and other diseases in which inflammation contributes to pathogenesis.
-
Am. J. Respir. Cell Mol. Biol. · Feb 2016
Aberrant DNA Methylation of Phosphodiesterase [corrected] 4D Alters Airway Smooth Muscle Cell Phenotypes.
Airway hyperresponsiveness (AHR) is a hallmark feature in asthma characterized by exaggerated airway contractile response to stimuli due to increased airway sensitivity and chronic airway remodeling. We have previously shown that allergen-induced AHR in mice is associated with aberrant DNA methylation in the lung genome, suggesting that AHR could be epigenetically regulated, and these changes might predispose the animals to asthma. Previous studies demonstrated that overexpression of phosphodiesterase 4D (PDE4D) is associated with increased AHR. ⋯ Taken together, our findings demonstrate that gene-specific epigenetic changes may predispose ASMCs to asthma through alterations in cell phenotypes. Modulation of ASMC phenotypes by methylated PDE4D oligonucleotides can reverse the aberrant ASMC functions to normal phenotypes. This has provided new insight to the development of novel therapeutic options for this debilitative disease.
-
Am. J. Respir. Cell Mol. Biol. · Feb 2016
Spatiotemporal Aeration and Lung Injury Patterns Are Influenced by the First Inflation Strategy at Birth.
Ineffective aeration during the first inflations at birth creates regional aeration and ventilation defects, initiating injurious pathways. This study aimed to compare a sustained first inflation at birth or dynamic end-expiratory supported recruitment during tidal inflations against ventilation without intentional recruitment on gas exchange, lung mechanics, spatiotemporal regional aeration and tidal ventilation, and regional lung injury in preterm lambs. Lambs (127 ± 2 d gestation), instrumented at birth, were ventilated for 60 minutes from birth with either lung-protective positive pressure ventilation (control) or as per control after either an initial 30 seconds of 40 cm H2O sustained inflation (SI) or an initial stepwise end-expiratory pressure recruitment maneuver during tidal inflations (duration 180 s; open lung ventilation [OLV]). ⋯ All strategies caused regional lung injury patterns that mirrored associated regional volume states. Irrespective of strategy, spatiotemporal volume loss was consistently associated with up-regulation of early growth response-1 expression. Our results show that mechanical and molecular consequences of lung aeration at birth are not simply related to rapidity of fluid clearance; they are also related to spatiotemporal pressure-volume interactions within the lung during inflation and deflation.