-
IEEE Trans Med Imaging · Apr 2007
Topology-preserving tissue classification of magnetic resonance brain images.
- Pierre-Louis Bazin and Dzung L Pham.
- Johns Hopkins University Radiology and Radiological Science Neuroradiology Division, Baltimore, MD 21287, USA.
- IEEE Trans Med Imaging. 2007 Apr 1; 26 (4): 487-96.
AbstractThis paper presents a new framework for multiple object segmentation in medical images that respects the topological properties and relationships of structures as given by a template. The technique, known as topology-preserving, anatomy-driven segmentation (TOADS), combines advantages of statistical tissue classification, topology-preserving fast marching methods, and image registration to enforce object-level relationships with little constraint over the geometry. When applied to the problem of brain segmentation, it directly provides a cortical surface with spherical topology while segmenting the main cerebral structures. Validation on simulated and real images characterises the performance of the algorithm with regard to noise, inhomogeneities, and anatomical variations.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:

- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.