IEEE transactions on medical imaging
-
IEEE Trans Med Imaging · Apr 2007
Geometrically accurate topology-correction of cortical surfaces using nonseparating loops.
In this paper, we focus on the retrospective topology correction of surfaces. We propose a technique to accurately correct the spherical topology of cortical surfaces. ⋯ The proposed method is a wholly self-contained topology correction algorithm, which determines geometrically accurate, topologically correct solutions based on the magnetic resonance imaging (MRI) intensity profile and the expected local curvature. Applied to real data, our method provides topological corrections similar to those made by a trained operator.
-
IEEE Trans Med Imaging · Apr 2007
Atlas renormalization for improved brain MR image segmentation across scanner platforms.
Atlas-based approaches have demonstrated the ability to automatically identify detailed brain structures from 3-D magnetic resonance (MR) brain images. Unfortunately, the accuracy of this type of method often degrades when processing data acquired on a different scanner platform or pulse sequence than the data used for the atlas training. ⋯ Validation using manually labeled test datasets has shown that the new procedure improves the segmentation accuracy (as measured by the Dice coefficient) by 10% or more for several structures including hippocampus, amygdala, caudate, and pallidum. The results verify that this new procedure reduces the sensitivity of the whole brain segmentation method to changes in scanner platforms and improves its accuracy and robustness, which can thus facilitate multicenter or multisite neuroanatomical imaging studies.
-
IEEE Trans Med Imaging · Apr 2007
Review Comparative StudyBrain functional localization: a survey of image registration techniques.
Functional localization is a concept which involves the application of a sequence of geometrical and statistical image processing operations in order to define the location of brain activity or to produce functional/parametric maps with respect to the brain structure or anatomy. Considering that functional brain images do not normally convey detailed structural information and, thus, do not present an anatomically specific localization of functional activity, various image registration techniques are introduced in the literature for the purpose of mapping functional activity into an anatomical image or a brain atlas. ⋯ Cortical surface registration and automatic brain labeling are some of the other tools towards establishing a fully automatic functional localization procedure. While several previous survey papers have reviewed and classified general-purpose medical image registration techniques, this paper provides an overview of brain functional localization along with a survey and classification of the image registration techniques related to this problem.
-
IEEE Trans Med Imaging · Apr 2007
A deformable registration method for automated morphometry of MRI brain images in neuropsychiatric research.
Image registration methods play a crucial role in computational neuroanatomy. This paper mainly contributes to the field of image registration with the use of nonlinear spatial transformations. Particularly, problems connected to matching magnetic resonance imaging (MRI) brain image data obtained from various subjects and with various imaging conditions are solved here. ⋯ A spatial deformation model imitating principles of continuum mechanics is used. Five similarity measures are tested in an experiment with image data obtained from the Simulated Brain Database and a quantitative evaluation of the algorithm is presented. Results of application of the method in automated spatial detection of anatomical abnormalities in first-episode schizophrenia are presented.
-
In this paper, we present a statistical parts-based model (PBM) of appearance, applied to the problem of modeling intersubject anatomical variability in magnetic resonance (MR) brain images. In contrast to global image models such as the active appearance model (AAM), the PBM consists of a collection of localized image regions, referred to as parts, whose appearance, geometry and occurrence frequency are quantified statistically. The parts-based approach explicitly addresses the case where one-to-one correspondence does not exist between all subjects in a population due to anatomical differences, as model parts are not required to appear in all subjects. ⋯ Parts are represented by generic scale-invariant features, and the model can, therefore, be applied to a wide variety of image domains. Experimentation based on 2-D MR slices shows that a PBM learned from a set of 102 subjects can be robustly fit to 50 new subjects with accuracy comparable to 3 human raters. Additionally, it is shown that unlike global models such as the AAM, PBM fitting is stable in the presence of unexpected, local perturbation.