• IEEE Trans Med Imaging · Apr 2007

    A statistical parts-based model of anatomical variability.

    • Matthew Toews and Tal Arbel.
    • Centre for Intelligent Machines, McGill University, Montreal, QC H3A 2A7, Canada. mtoews@cim.mcgill.ca
    • IEEE Trans Med Imaging. 2007 Apr 1; 26 (4): 497-508.

    AbstractIn this paper, we present a statistical parts-based model (PBM) of appearance, applied to the problem of modeling intersubject anatomical variability in magnetic resonance (MR) brain images. In contrast to global image models such as the active appearance model (AAM), the PBM consists of a collection of localized image regions, referred to as parts, whose appearance, geometry and occurrence frequency are quantified statistically. The parts-based approach explicitly addresses the case where one-to-one correspondence does not exist between all subjects in a population due to anatomical differences, as model parts are not required to appear in all subjects. The model is constructed through a fully automatic machine learning algorithm, identifying image patterns that appear with statistical regularity in a large collection of subject images. Parts are represented by generic scale-invariant features, and the model can, therefore, be applied to a wide variety of image domains. Experimentation based on 2-D MR slices shows that a PBM learned from a set of 102 subjects can be robustly fit to 50 new subjects with accuracy comparable to 3 human raters. Additionally, it is shown that unlike global models such as the AAM, PBM fitting is stable in the presence of unexpected, local perturbation.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…