• Q J Nucl Med Mol Imaging · Dec 2007

    S-factor calculations for mouse models using Monte-Carlo simulations.

    • A Bitar, A Lisbona, and M Bardiès.
    • INSERM, U601, Nantes, France.
    • Q J Nucl Med Mol Imaging. 2007 Dec 1; 51 (4): 343-51.

    AimTargeted radionuclide therapy applications require the use of small animals for preclinical experiments. Accurate dose estimation is needed in such animals to explore and analyze the toxicity of injected radiopharmaceuticals. We developed two numerical models to allow for a more accurate mouse dosimetry.MethodsA frozen nude mouse (30 g) was sliced and digital photographs were taken during the operation. More than 30 organs and tissues were identified and manually segmented. A digital (voxel-based) and a mathematical model were constructed from the segmented images. Important organs were simulated as radiation sources using the Monte-Carlo code MCNP4C. Mono-energetic photons from 0.005 to 2 MeV, and monoenergetic electrons from 0.1 to 2.5 MeV were simulated. Activity was supposed to be uniform in all source organs.ResultsResults from monoenergetic emissions were integrated over emission spectra. Radionuclide S-factors (Gy/Bq.s) were calculated by taking into account both electron and photon contributions. A comparison of the results obtained with either a voxel-based or mathematical model was carried out. The voxel-based model was then used to revise dosimetric results, obtained previously under the assumption that all emitted energy was absorbed locally. For (188)Re, the self-absorbed doses in xenografted tumors were 39-69% lower than that obtained by assuming local energy deposition.ConclusionThe voxel-based models represent more realistic anatomic approach. The rapid advancement of computer science and new features added to Monte-Carlo codes permit considerable reduction of computational run time. Cross-doses should not be neglected when medium to high energy beta emitters are being used for preclinical experiments on mice.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…