-
Annu Int Conf IEEE Eng Med Biol Soc · Jul 2018
Improving Myoelectric Pattern Recognition Robustness to Electrode Shift by Autoencoder.
- Bo Lv, Xinjun Sheng, and Xiangyang Zhu.
- Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul 1; 2018: 5652-5655.
AbstractIt is evident that the electrode shift will result in a degradation of myoelectric pattern recognition classification accuracy, which is inevitable during the prosthetic socket donning and doffing. To cope with this limitation, we propose an unsupervised feature extraction method called sparse autoencoder (SAE) to extract the robust spatial structure and correlation of high density (HD) electromyography (EMG). The algorithm is evaluated on nine intact-limbed subjects and one amputee. The experimental results show that SAE achieves lower classification error without shift, and significantly decrease the sensitivity to electrode shift with ±1 cm compared with the timedomain and autoregressive features (TDAR). Furthermore, SAE is not sensitive to the shift direction that is perpendicular to the muscle fibers. The promising results of this study make great contribution to promoting the applications of pattern recognition based myoelectric control system in real-world condition.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*,_underline_or**bold**. - Superscript can be denoted by
<sup>text</sup>and subscript<sub>text</sub>. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3., hyphens-or asterisks*. - Links can be included with:
[my link to pubmed](http://pubmed.com) - Images can be included with:
 - For footnotes use
[^1](This is a footnote.)inline. - Or use an inline reference
[^1]to refer to a longer footnote elseweher in the document[^1]: This is a long footnote..