-
- Yingjie Zheng, Bowen Zhen, Aichi Chen, Fulang Qi, Xiaohan Hao, and Bensheng Qiu.
- Hefei National Lab for Physical Sciences at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China.
- Med Phys. 2020 Jul 1; 47 (7): 3013-3022.
PurposeSpatial resolution is an important parameter for magnetic resonance imaging (MRI). High-resolution MR images provide detailed information and benefit subsequent image analysis. However, higher resolution MR images come at the expense of longer scanning time and lower signal-to-noise ratios (SNRs). Using algorithms to improve image resolution can mitigate these limitations. Recently, some convolutional neural network (CNN)-based super-resolution (SR) algorithms have flourished on MR image reconstruction. However, most algorithms usually adopt deeper network structures to improve the performance.MethodsIn this study, we propose a novel hybrid network (named HybridNet) to improve the quality of SR images by increasing the width of the network. Specifically, the proposed hybrid block combines a multipath structure and variant dense blocks to extract abundant features from low-resolution images. Furthermore, we fully exploit the hierarchical features from different hybrid blocks to reconstruct high-quality images.ResultsAll SR algorithms are evaluated using three MR image datasets and the proposed HybridNet outperformed the comparative methods with peak a signal-to-noise ratio (PSNR) of 42.12 ± 0.92 dB, 38.60 ± 2.46 dB, 35.17 ± 2.96 dB and a structural similarity index (SSIM) of 0.9949 ± 0.0015, 0.9892 ± 0.0034, 0.9740 ± 0.0064, respectively. Besides, our proposed network can reconstruct high-quality images on an unseen MR dataset with PSNR of 33.27 ± 1.56 and SSIM of 0.9581 ± 0.0068.ConclusionsThe results demonstrate that HybridNet can reconstruct high-quality SR images from degraded MR images and has good generalization ability. It also can be leveraged to assist the task of image analysis or processing.© 2020 American Association of Physicists in Medicine.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*,_underline_or**bold**. - Superscript can be denoted by
<sup>text</sup>and subscript<sub>text</sub>. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3., hyphens-or asterisks*. - Links can be included with:
[my link to pubmed](http://pubmed.com) - Images can be included with:
 - For footnotes use
[^1](This is a footnote.)inline. - Or use an inline reference
[^1]to refer to a longer footnote elseweher in the document[^1]: This is a long footnote..