Med Phys
-
Gliomas are the most common primary tumor of the brain and are classified into grades I-IV of the World Health Organization (WHO), based on their invasively histological appearance. Gliomas grading plays an important role to determine the treatment plan and prognosis prediction. In this study we propose two novel methods for automatic, non-invasively distinguishing low-grade (Grades II and III) glioma (LGG) and high-grade (grade IV) glioma (HGG) on conventional MRI images by using deep convolutional neural networks (CNNs). ⋯ Two effective glioma grading methods on conventional MRI images using deep convolutional neural networks have been developed. Our methods are fully automated without manual specification of region-of-interests and selection of slices for model training, which are common in traditional machine learning based brain tumor grading methods. This methodology may play a crucial role in selecting effective treatment options and survival predictions without the need for surgical biopsy.
-
Spatial resolution is an important parameter for magnetic resonance imaging (MRI). High-resolution MR images provide detailed information and benefit subsequent image analysis. However, higher resolution MR images come at the expense of longer scanning time and lower signal-to-noise ratios (SNRs). Using algorithms to improve image resolution can mitigate these limitations. Recently, some convolutional neural network (CNN)-based super-resolution (SR) algorithms have flourished on MR image reconstruction. However, most algorithms usually adopt deeper network structures to improve the performance. ⋯ The results demonstrate that HybridNet can reconstruct high-quality SR images from degraded MR images and has good generalization ability. It also can be leveraged to assist the task of image analysis or processing.