• World Neurosurg · Dec 2021

    Review

    Properties and characteristics of 3-dimensional printed head models used in simulation of neurosurgical procedures: a scoping review.

    • Liam R Maclachlan, Hamish Alexander, David Forrestal, James I Novak, and Michael Redmond.
    • Kenneth G Jamieson Department of Neurosurgery, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia; School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Queensland, Australia; School of Medicine, The University of Queensland, Brisbane, Queensland, Australia. Electronic address: liam.maclachlan@health.qld.gov.au.
    • World Neurosurg. 2021 Dec 1; 156: 133146.e6133-146.e6.

    BackgroundIntracranial surgery can be complex and high risk. Safety, ethical and financial factors make training in the area challenging. Head model 3-dimensional (3D) printing is a realistic training alternative to patient and traditional means of cadaver and animal model simulation.ObjectiveTo describe important factors relating to the 3D printing of human head models and how such models perform as simulators.MethodsSearches were performed in PubMed, the Cochrane Library, Scopus, and Web of Science. Articles were screened independently by 3 reviewers using Covidence software. Data items were collected under 5 categories: study information; printers and processes; head model specifics; simulation and evaluations; and costs and production times.ResultsForty articles published over the last 10 years were included in the review. A range of printers, printing methods, and substrates were used to create head models and tissue types. Complexity of the models ranged from sections of single tissue type (e.g., bone) to high-fidelity integration of multiple tissue types. Some models incorporated disease (e.g., tumors and aneurysms) and artificial physiology (e.g., pulsatile circulation). Aneurysm clipping, bone drilling, craniotomy, endonasal surgery, and tumor resection were the most commonly practiced procedures. Evaluations completed by those using the models were generally favorable.ConclusionsThe findings of this review indicate that those who practice surgery and surgical techniques on 3D-printed head models deem them to be valuable assets in cranial surgery training. Understanding how surgical simulation on such models affects surgical performance and patient outcomes, and considering cost-effectiveness, are important future research endeavors.Crown Copyright © 2021. Published by Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…