• Neuroscience · May 2022

    Optimizing a neuron for reliable dendritic subunit pooling.

    • Tejas Ramdas and Bartlett W Mel.
    • Computational Neuroscience Program, USC, United States. Electronic address: tramdas@usc.edu.
    • Neuroscience. 2022 May 1; 489: 216-233.

    AbstractIn certain biologically relevant computing scenarios, a neuron "pools" the outputs of multiple independent functional subunits, firing if any one of them crosses threshold. Recent studies suggest that active dendrites could provide the thresholding mechanism, so that both the thresholding and pooling operations could take place within a single neuron. A pooling neuron faces a difficult task, however. Dendrites can produce highly variable responses depending on the density and spatial patterning of their synaptic inputs, and bona fide dendritic firing may be very rare, making it difficult for a neuron to reliably detect when one of its many dendrites has "gone suprathreshold". Our goal has been to identify biological adaptations that optimize a neuron's performance at the binary subunit pooling (BSP) task. Katz et al. (2009) pointed to the importance of spine density gradients in shaping dendritic responses. In a similar vein, we used a compartmental model to study how a neuron's performance at the BSP task is affected by different spine density layouts and other biological variables. We found BSP performance was optimized when dendrites have (1) a decreasing spine density gradient (true for many types of pyramidal neurons); (2) low-to-medium resistance spine necks; (3) strong NMDA currents; (4) fast spiking Na+ channels; and (5) powerful hyperpolarizing inhibition. Our findings provide a normative account that links several neuronal properties within the context of a behaviorally relevant task, and may provide new insights into nature's subtle strategies for optimizing the computing capabilities of neural tissue.Copyright © 2022 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…