• Neuroscience · Jan 2022

    Region-dependent millisecond time-scale sensitivity in spectrotemporal integrations in guinea pig primary auditory cortex.

    • Masataka Nishimura and Wen-Jie Song.
    • Department of Sensory and Cognitive Physiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 8608556, Japan. Electronic address: nishimjp@kumamoto-u.ac.jp.
    • Neuroscience. 2022 Jan 1; 480: 229-245.

    AbstractSpectrotemporal integration is a key function of our auditory system for discriminating spectrotemporally complex sounds, such as words. Response latency in the auditory cortex is known to change with the millisecond time-scale depending on acoustic parameters, such as sound frequency and intensity. The functional significance of the millisecond-range latency difference in the integration remains unclear. Actually, whether the auditory cortex has a sensitivity to the millisecond-range difference has not been systematically examined. Herein, we examined the sensitivity in the primary auditory cortex (A1) using voltage-sensitive dye imaging techniques in guinea pigs. Bandpass noise bursts in two different bands (band-noises), centered at 1 and 16 kHz, respectively, were used for the examination. Onset times of individual band-noises (spectral onset-times) were varied to virtually cancel or magnify the latency difference observed with the band-noises. Conventionally defined nonlinear effects in integration were analyzed at A1 with varying sound intensities (or response latencies) and/or spectral onset-times of the two band-noises. The nonlinear effect measured in the high-frequency region of the A1 linearly changed depending on the millisecond difference of the response onset-times, which were estimated from the spatially-local response latencies and spectral onset-times. In contrast, the low-frequency region of the A1 had no significant sensitivity to the millisecond difference. The millisecond-range latency difference may have functional significance in the spectrotemporal integration with the millisecond time-scale sensitivity at the high-frequency region of A1 but not at the low-frequency region.Copyright © 2021 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…