-
- Bo Wu, Jing Yu, Yibing Liu, Gaojing Dou, Yuanyuan Hou, Zhiyun Zhang, Xuefeng Pan, Hongyu Wang, Pengcheng Zhou, and Dong Zhu.
- Department of Orthopaedics, the First Bethune Hospital of Jilin University, Changchun, China; Clinical College, Jilin University, Changchun, China.
- World Neurosurg. 2022 Feb 1; 158: e543-e556.
ObjectiveThe purpose of this study is to explore the high-risk pathogenic driver genes for the occurrence and development of ankylosing spondylitis (AS) based on the bioinformatics method at the molecular level, to further elaborate the molecular mechanism of the pathogenesis of AS, and to provide potential biological targets for the diagnosis and treatment of clinical AS.MethodsThe gene expression profile data GSE16879 were downloaded from the GEO (Gene Expression Omnibus) database, and weighted gene coexpression network analysis was performed. Highly correlated genes were divided into 14 modules, and 582 genes contained in the yellow (classic module) and 59 genes contained in grey60 (hematologic module) modules had the strongest correlation with AS. After protein-protein interaction (PPI) analysis, the top 20 genes with the highest scores were obtained from classic module and hematologic module, respectively. The DAVID (Database for Annotation, Visualization, and Integrated Discovery) database was used for Gene Ontology analysis and Kyoto Encyclopedia of Genes and Genomes analysis to analyze the biological functions of high-risk genes related to AS.ResultsThe results showed that the process of signal recognition particle-dependent cotranslational protein targeting to membrane, ribosome, nicotinamide adenine diphosphate hydride dehydrogenase (ubiquinone) activity, platelet activation, integrin complex, and extracellular matrix binding were enriched.ConclusionsIn this study, weighted gene coexpression network analysis, an efficient system biology algorithm, was used to analyze the high-risk pathogenic driver gene of AS. We provide new targets for the diagnosis and treatment of clinical AS and new ideas for further study.Copyright © 2021 Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:

- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.