• Annu Int Conf IEEE Eng Med Biol Soc · Jul 2019

    Pancreas Segmentation in Abdominal CT Scans using Inter-/Intra-Slice Contextual Information with a Cascade Neural Network.

    • Lei Zhang, Zhengzheng Yang, Min Zhang, Jun Feng, Zheng Wu, Fenggang Ren, and Yi Lv.
    • Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul 1; 2019: 5937-5940.

    AbstractAutomatic pancreas segmentation with high precision in Computed Tomography (CT) images is a fundamental issue in both medical image analysis and computer-aided diagnosis (CAD). However, pancreas segmentation is challenging because of the high variability in location and anatomy of the organs, while occupying only a very small part of the entire abdominal CT scans. Due to the rapid development of the CAD system and the urgent need for clinical treatment, the pancreas image segmentation with high precision is demanded. In this paper, we propose a new approach for automatic pancreas segmentation of CT images using inter-/intra-slice contextual information with a cascade neural network. Fully convolutional neural networks (FCN) are used to extract intra-slice contextual information for pancreas segmentation. Recurrent neural networks (RNNs) is introduced to extract inter-slice contextual information. With the setting bounding boxes, the proposed method outperforms the state-of-the-arts with an average Dice Similarity Coefficient (DSC) of 87.72 for NIH dataset with 4-fold cross-validation.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?

    User can't be blank.

    Content can't be blank.

    Content is too short (minimum is 15 characters).

    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…