• Neuroscience · Feb 2022

    Ipsilesional Motor Cortex Activation with High-force Unimanual Handgrip Contractions of the Less-affected Limb in Participants with Stroke.

    • Justin W Andrushko, Layla Gould, Doug W Renshaw, Shannon Forrester, Michael E Kelly, Gary Linassi, Marla Mickleborough, Alison Oates, Gary Hunter, Ron Borowsky, and Jonathan P Farthing.
    • College of Kinesiology, University of Saskatchewan, Saskatchewan, Canada.
    • Neuroscience. 2022 Feb 10; 483: 82-94.

    AbstractStroke is a leading cause of severe disability that often presents with unilateral motor impairment. Conventional rehabilitation approaches focus on motor practice of the affected limb and aim to suppress brain activity in the contralesional hemisphere. Conversely, exercise of the less-affected limb promotes contralesional brain activity which is typically viewed as contraindicated in stroke recovery due to the interhemispheric inhibitory influence onto the ipsilesional hemisphere. Yet, high-force unimanual handgrip contractions are known to increase ipsilateral brain activation in control participants, and it remains to be determined if high-force contractions with the less-affected limb would promote ipsilateral brain activation in participants with stroke (i.e., the ipsilesional hemisphere). Therefore, this study aimed to determine how parametric increases in handgrip force during repeated contractions with the less-affected limb impacts brain activity bilaterally in participants with stroke and in a cohort of neurologically intact controls. Participants performed repeated submaximal contractions at 25%, 50%, and 75% of their maximum voluntary contraction during separate functional magnetic resonance imaging brain scans. Brain activation during the tasks was quantified as the percent change from resting levels. In this study, higher force contractions were found to increase brain activation in the ipsilesional (stroke)/ipsilateral (controls) hemisphere in both groups (p = .002), but no between group differences were observed. These data suggest that high-force exercise with the less-affected limb may promote ipsilesional cortical plasticity to promote motor recovery of the affected-limb in participants with stroke.Copyright © 2021 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.