• Neuroscience · Mar 2022

    Hydrogen Attenuated Inflammation Response and Oxidative in Hypoxic Ischemic Encephalopathy via Nrf2 Mediated the Inhibition of NLRP3 and NF-κB.

    • Yajiao Hu, Pingzhu Wang, and Kun Han.
    • Department of Anesthesiology, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Birth Defects and Related Women and Children Diseases, Ministry of Education, Chengdu 610041, China.
    • Neuroscience. 2022 Mar 1; 485: 23-36.

    AbstractHypoxia and ischemia cause neonatal encephalopathy and brain injury and can further result in cerebral palsy, cognitive impairment, growth restriction, and epilepsy. Induction of neuroprotection is a crucial therapeutic strategy for the treatment of perinatal hypoxic-ischaemic encephalopathy (HIE). Hydrogen has neuroprotective effects against brain-related diseases. Inflammation and oxidative stress are the two main pathophysiological mechanisms in neonatal hypoxic-ischaemic injury. Nuclear factor erythroid 2-related factor 2 (Nrf2) is an endogenous redox-sensitive transcription factor that participates in the antioxidant defence system through its effects on inflammation and oxidative stress. Herein, the research focuses on the mechanisms by which Nrf2 participates in the protection of hydrogen against HIE. The model of HIE was established by ligation of the right carotid artery and hypoxia in wild-type (WT) and Nrf2-/- mice. First, Nrf2 pathway activity was detected after hypoxia-ischaemia (HI) followed or not by hydrogen treatment. Brain injury, apoptosis, the inflammatory response, oxidative stress injury, and learning and memory function were assayed. We found that HI induced Nrf2 expression and signalling activation. Hydrogen alleviated the infarction volume, brain water content, neurological scores, apoptosis and long-term learning and memory functions after HI in WT mice but not in Nrf2-/- mice. Moreover, the oxidative products reactive oxygen species (ROS) and malondialdehyde (MDA) and the cytokines tumor necrosis factor-alpha (TNF-α), interleukin 6 (IL-6) and High mobility group box 1 (HMGB1) were reduced and the antioxidant enzymes Superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT) were upregulated by hydrogen treatment after HI in WT mice, but not in Nrf2-/- mice. In addition, the absence of Nrf2 abolished the suppressive effect of hydrogen on the expression of Nacht, Lrr, and Pyd domains-containing protein 3 (NLRP3) pathway members and p65 NF-κB after HI. Taken together, our findings showed that hydrogen alleviated cellular injury and apoptosis, neurobehavioural deficits, the inflammatory response and oxidative stress via the Nrf2-mediated NLRP3 and NF-κB pathways.Copyright © 2021. Published by Elsevier Ltd.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…