• Neuroscience · May 2022

    Transcranial photobiomodulation therapy ameliorates perioperative neurocognitive disorder through modulation of mitochondrial function in aged mice.

    • Xiaojun Zhang, Wensi Wu, Yuelian Luo, and Zhi Wang.
    • Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.
    • Neuroscience. 2022 May 10; 490: 236-249.

    AbstractPerioperative neurocognitive disorder (PND) is a serious nervous system complication characterized by progressive cognitive impairment, especially in geriatric population. However, the neuropathogenesis of PND is complex, and there are no approved disease-modifying therapeutic options. Mitochondrial dysfunction has been demonstrated to contribute to the occurrence and development of PND. Transcranial near-infrared (tNIR) light treatment helps to improve mitochondrial dysfunction and enhance cognition, but its effect on PND remains unclear. Here, we evaluated the effect of tNIR light treatment on PND caused by anesthesia and surgery in aged mice. We built the PND models with 18-month C57BL/6 male mice by exploratory laparotomy under isoflurane inhalation anesthesia, and treated by tNIR light with wavelength 810 nm for 2 weeks. The short-term and long-term changes in cognitive function were analyzed by behavioral tests. We further explored the effects of tNIR light on mitochondria, synapses, neurons, and signaling pathways through different experimental methods. The results demonstrated that the cognitive impairment and mitochondrial dysfunction in PND mice were ameliorated after tNIR light treatment. Further experiments demonstrated that photobiomodulation therapy (PBMT) increased synapse-related protein expression, neuronal survival, and protected synapse from depletion. Moreover, downregulated sirtuin 1 (SIRT1) and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) were increased after tNIR light treatment. Our results suggested that tNIR light was an effective treatment of PND through PBMT effect, accompanied by synaptic and neuronal improvement. The improvement of mitochondrial dysfunction mediated by SIRT1/PGC-1α signaling pathway might participate in this process. Those findings might provide a novel and noninvasive therapeutic target for PND.Copyright © 2022 The Authors. Published by Elsevier Ltd.. All rights reserved.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.