• Neuroscience · May 1988

    Real-time characterization of dopamine overflow and uptake in the rat striatum.

    • R M Wightman, C Amatore, R C Engstrom, P D Hale, E W Kristensen, W G Kuhr, and L J May.
    • Department of Chemistry, Indiana University, Bloomington 47405.
    • Neuroscience. 1988 May 1; 25 (2): 513-23.

    AbstractThe rate of overflow and disappearance of dopamine from the extracellular fluid of the rat striatum has been measured during neuronal stimulation. Overflow of dopamine was induced by electrical stimulation of the medial forebrain bundle with biphasic pulse trains. The instantaneous concentration of dopamine was measured with a Nafion-coated, carbon fiber microelectrode implanted in the brain. The measurement technique, fast-scan cyclic voltammetry, samples the concentration of dopamine in less than 10 ms at 100 ms intervals. Identification of dopamine is made with cyclic voltammetry. Stimulated overflow was measured as a function of electrode position, stimulation duration, stimulation frequency, and after administration of L-DOPA and nomifensine. The observed concentration during a 2-s, 60-Hz stimulation was found to alter with position of the carbon fiber electrode. For stimuli of 3 s or less the amount of overflow was found to be a linear function of stimulus duration at a fixed electrode position. The observed overflow was found to be steady-state at a frequency of 30 Hz, suggesting a balance between uptake and synaptic overflow under these conditions. The experimental data was found to be successfully modelled when the balance of uptake and stimulated overflow was considered. It was assumed that each stimulus pulse releases a constant amount of dopamine (125 nM), and that uptake follows a Michaelis-Menten model for a single uptake site with Km = 200 nM and Vmax = 5 microM/s. The increase in stimulated overflow observed after L-DOPA (250 mg/kg) could be modelled by a 1.6-fold increase in the amount of dopamine release with no alteration of the uptake parameters. The increase in modelled by an increase in Km. In addition, the fit of the modelled data to the experimental data was improved when diffusion from the release and uptake sites was considered.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.