• Neuroscience · Jul 1997

    Expression and localization of Na+/H+ exchangers in rat central nervous system.

    • E Ma and G G Haddad.
    • Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, U.S.A.
    • Neuroscience. 1997 Jul 1; 79 (2): 591-603.

    AbstractNeurons in the central nervous system regulate their intracellular pH using particular membrane proteins of which two, namely the Na+-dependent Cl-/HCO3- exchanger and the Na+/H+ exchanger, are essential. In this study we examined messenger RNA expression and distribution of Na+/H+ exchanger in the newborn rat central nervous system and with maturation using Northern blot analysis and in situ hybridization. Our study clearly shows that each Na+/H+ exchanger has a different expression pattern in the rat central nervous system. As in non-excitable tissues, Na+/H+ exchanger 1 is by far the most abundant of all Na+/H+ exchangers in the rat central nervous system. Its expression is ubiquitous although its messenger RNA appears at higher levels in the hippocampus, in the 2nd/3rd layers of periamygdaloid cortex and in the cerebellum. The low level of messenger RNAs encoding Na+/H+ exchanger 2 and 4 is mainly expressed in the cerebral cortex and in the brainstem-diencephalon, while Na+/H+ exchanger 3 transcripts are found only in the cerebellar Purkinje cells. From a developmental point of view, Na+/H+ exchanger 1, 2 and 4 showed an increased level in their transcripts in the cerebral cortex while an opposite trend existed in the cerebellum from postnatal day 0 to postnatal day 30. The messenger RNA for Na+/H+ exchanger 3, however, increased its level with age in cerebellum. From our data we conclude that: i) the expression of the Na+/H+ exchanger is age-, region-, and subtype-specific, with Na+/H+ exchanger 1 being the most prevalent in the rat central nervous system; ii) specialization of groups of neurons with respect to the type of Na+/H+ exchanger is clearly illustrated by Na+/H+ exchanger 3 which is almost totally localized in cerebellar Purkinje cells; and iii) the developmental increase in the messenger RNA for Na+/H+ exchanger 1 in the cerebral cortex and hippocampus is consistent with our previous studies on intracellular pH physiology in neonatal and mature neurons. Together this study indicates that expression of each Na+/H+ exchanger messenger RNA is differentially regulated both during development and in the different regions of rat central nervous system.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…