• Neuroscience · Jan 2000

    Synaptic transmission in the neocortex during reversible cooling.

    • M Volgushev, T R Vidyasagar, M Chistiakova, and U T Eysel.
    • Department of Neurophysiology, Faculty of Medicine, Ruhr-University Bochum, D-44780, Bochum, Germany. maxim@neurop.ruhr-uni-bochum.de
    • Neuroscience. 2000 Jan 1; 98 (1): 9-22.

    AbstractWe studied the effects of reversible cooling on synaptic transmission in slices of rat visual cortex. Cooling had marked monotonic effects on the temporal properties of synaptic transmission. It increased the latency of excitatory postsynaptic potentials and prolonged their time-course. Effects were non-monotonic on other properties, such as amplitude of excitatory postsynaptic potentials and generation of spikes. The amplitude of excitatory postsynaptic potentials increased, decreased, or remain unchanged while cooling down to about 20 degrees C, but thereafter it declined gradually in all cells studied. The effect of moderate cooling on spike generation was increased excitability, most probably due to the ease with which a depolarized membrane potential could be brought to spike threshold by a sufficiently strong excitatory postsynaptic potential. Stimuli that were subthreshold above 30 degrees C could readily generate spikes at room temperature. Only at well below 10 degrees C could action potentials be completely suppressed. Paired-pulse facilitation was less at lower temperatures, indicating that synaptic dynamics are different at room temperature as compared with physiological temperatures. These results have important implications for extrapolating in vitro data obtained at room temperatures to higher temperatures. The data also emphasize that inactivation by cooling might be a useful tool for studying interactions between brain regions, but the data recorded within the cooled area do not allow reliable conclusions to be drawn about neural operations at normal temperatures.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.