-
- J Wang, F Meng, J E Cottrell, and I S Kass.
- Department of Anesthesiology, Box 6, State University of New York Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, USA.
- Neuroscience. 2006 Jul 7;140(3):957-67.
AbstractTwo volatile agents, isoflurane and sevoflurane have similar anesthetic properties but different potencies; this allows the discrimination between anesthetic potency and other properties on the protective mechanisms of volatile anesthesia. Two times the minimal alveolar concentration of an anesthetic is approximately the maximally used clinical concentration of that agent; this concentration is 2% for isoflurane and 4% for sevoflurane. We measured the effects of isoflurane and sevoflurane on cornus ammonis 1 (CA1) pyramidal cells in rat hippocampal slices subjected to 10 min of hypoxia (95% nitrogen 5% carbon dioxide) and 60 min of recovery. Anesthetic was delivered to the gas phase using a calibrated vaporizer for each agent. At equipotent anesthetic concentrations, sevoflurane (4%) but not isoflurane (2%), enhanced the initial hyperpolarization (6.7 vs. 3.4 mV), delayed the hypoxic rapid depolarization (521 vs. 294 s) and reduced peak hypoxic cytosolic calcium concentration (203 vs. 278 nM). While both agents reduced the final membrane potential at 10 min of hypoxia compared with controls, 4% sevoflurane had a significantly greater effect than 2% isoflurane (-24.4 vs. -3.5 mV). The effect of these concentrations of isoflurane and sevoflurane was not different for sodium, potassium or ATP concentrations at 10 min of hypoxia, the only difference at 5 min of hypoxia was that ATP was better maintained with 4% sevoflurane (2.2 vs. 1.3 nmol/mg). If the same absolute concentration (4%) of isoflurane and sevoflurane is compared then the cellular changes during hypoxia are similar for both agents and they both improve recovery. We conclude that an anesthetic's absolute concentration and not its anesthetic potency correlates with improved recovery of CA1 pyramidal neurons. The mechanisms of sevoflurane-induced protection include delaying and attenuating the depolarization and the increase of cytosolic calcium and delaying the fall in ATP during hypoxia.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:

- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.