• Neuroscience · May 2022

    Ski Regulates the Inflammatory Response of Reactive Astrocytes Induced by Oxygen Glucose Deprivation/Reoxygenation (OGD/R) Through the NF-κB Pathway.

    • Hai-Yang Liao, Rui Ran, Chao-Ming Da, Zhi-Qiang Wang, Kai-Sheng Zhou, and Hai-Hong Zhang.
    • The Second Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China; Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou 730000, PR China.
    • Neuroscience. 2022 May 10; 490: 250-263.

    AbstractSpinal cord injury (SCI) is a common disease of the nervous system, including primary and secondary injuries. Neuronal inflammation after SCI is the most important pathological process of SCI and a chemical barrier to nerve function recovery after injury. Ski, an evolutionarily conserved functional transcriptional regulator protein, is upregulated in reactive astrocytes after SCI and regulates the biological characteristics of astrocytes. However, its role in the glial inflammatory response triggered by reactive astrocytes after spinal cord ischemia and its exact mechanism remains unclear. This study investigated the role and mechanism of Ski in the inflammatory response triggered by reactive astrocytes induced by oxygen and sugar deprivation/reoxygenation (OGD/R) model in vitro. In the ODG/R model, Ski expression was upregulated. In contrast, Ski upregulation was accompanied by increased levels of iNOS, IL-1β, IL-6, TNF-α, and other inflammation-related factors. These results indicated that the inflammatory response triggered by astrocytes was significantly enhanced in OGD/R-stimulated astrocytes. Astrocytes were transfected with Ski specific siRNA to knock out Ski and subsequently attenuate OGD-induced astrocyte-triggered inflammation. Our results also suggest that Ski downregulation downregulates the expression of iNOS, IL-1β, IL-6, and TNF-α in OGD/R-induced reactive astrocytes by inhibiting the activity of the NF-κB signaling pathway. In conclusion, downregulation of Ski can effectively inhibit glial inflammation in SCI by inhibiting the activity of the NF-κB pathway. These findings suggest that Ski is a promising therapeutic target for inflammatory responses after SCI.In conclusion, Ski downregulation can effectively inhibit glial inflammation in SCI by inhibiting the activity of the NF-κB pathway. These findings suggest that Ski might serve as a promising target for the treatment of inflammatory responses after SCI.Copyright © 2022 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…