• Neuroscience · May 2022

    A Single Model Deep Learning Approach for Alzheimer's Disease Diagnosis.

    • Fan Zhang, Bo Pan, Pengfei Shao, Peng Liu, Alzheimer's Disease Neuroimaging Initiative, Australian Imaging Biomarkers Lifestyle flagship study of ageing, Shuwei Shen, Peng Yao, and Ronald X Xu.
    • Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, China; Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, China.
    • Neuroscience. 2022 May 21; 491: 200-214.

    AbstractEarly and accurate diagnosis of Alzheimer's disease (AD) and its prodromal period mild cognitive impairment (MCI) is essential for the delayed disease progression and the improved quality of patients' life. The emerging computer-aided diagnostic methods that combine deep learning with structural magnetic resonance imaging (sMRI) have achieved encouraging results, but some of them are limit of issues such as data leakage, overfitting, and unexplainable diagnosis. In this research, we propose a novel end-to-end deep learning approach for automated diagnosis of AD. This approach has the following differences from the current approaches: (1) Convolutional Neural Network (CNN) models of different structures and capacities are evaluated systemically and the most suitable model is adopted for AD diagnosis; (2) A data augmentation strategy named Two-stage Random RandAugment (TRRA) is proposed to alleviate the overfitting issue caused by limited training data and to improve the classification performance in AD diagnosis; (3) An explainable method of Grad-CAM++ is introduced to generate the visually explainable heatmaps to make our model more transparent. Our approach has been evaluated on two publicly accessible datasets for two classification tasks of AD vs. cognitively normal (CN) and progressive MCI (pMCI) vs. stable MCI (sMCI). The experimental results indicate that our approach outperforms the state-of-the-art approaches, including those using multi-model and three-dimensional (3D) CNN methods. The resultant heatmaps from our approach also highlight the lateral ventricle and some regions of cortex, which have been proved to be affected by AD.Copyright © 2022 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…