• World Neurosurg · Aug 2022

    Modeling Flow Diverters using a Porous Medium Approach: A Fast Alternative to Virtual Flow Diverter Deployment.

    • Jinyu Xu, Christof Karmonik, Ying Yu, Nan Lv, Zhaoyue Shi, Jian-Min Liu, and Qinghai Huang.
    • Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai, China.
    • World Neurosurg. 2022 Aug 1; 164: e501-e508.

    BackgroundThe Tubridge flow diverter (FD) (MicroPort Medical Co. Ltd., Shanghai, China) is a novel device aimed at reconstructing the parent artery and eliminating the aneurysm. Numerical simulations based on virtual FD deployment allow the assessment of the complex nature of aneurismal flow changes before the actual intervention but are demanding on computational resources. Here, we evaluate an alternative strategy of modeling FD effects for the Tubridge system using a porous medium. The goal of this study is to reduce demands on time and complexity of the simulation procedure for applications in clinical research.MethodsTen patient-specific aneurysm models were reconstructed from retrospectively collected diagnostic 3-dimensional digital subtraction angiographic images. Virtual FDs were deployed (SolidWorks, Dassault Systems, Concord, Massachusetts, USA; Meshmixer, Autodesk, San Rafael, California, USA) and corresponding porous medium patches were constructed at the ostium with a research computational fluid dynamics prototype (Siemens Healthineers, Forchheim, Germany). Hemodynamic conditions were simulated in 2 approaches.ResultsHemodynamics inside the aneurysm based on these 2 approaches were compared. Both approaches yielded similar results. Mean wall shear stress and mean pressure of the aneurysmal wall correlated significantly (r = 0.8, r = 1.0, P < 0.05) as did mean velocity and mean pressure at a region inside the aneurysm, at the ostium and at a cross section containing the main vertex (for velocities r = 0.9; for pressures r = 1.0, P < 0.05). The use of porous medium patches reduced the preparation and simulation time together by approximately 50%.ConclusionsUsing a porous medium approach yields comparable mean values for hemodynamic alterations compared to direct virtual FD simulations. Additionally, the porous medium approach greatly reduced the modeling complexity and computation time.Copyright © 2022 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…