• Neuroscience · Aug 2022

    Review

    Age and Interlimb Coordination Complexity Modulate Oscillatory Spectral Dynamics and Large-scale Functional Connectivity.

    • Sybren Van Hoornweder, Diego Andrés Blanco Mora, Siel Depestele, Joana Frieske, Kim van Dun, Koen Cuypers, Stefanie Verstraelen, and Raf Meesen.
    • REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Diepenbeek, Belgium. Electronic address: Sybren.van.hoornweder@uhasselt.be.
    • Neuroscience. 2022 Aug 1; 496: 1-15.

    AbstractInterlimb coordination deteriorates as a result of aging. Due to its ubiquity in daily life, a greater understanding of the underlying neurophysiological changes is required. Here, we combined electroencephalography time-frequency spectral power and functional connectivity analyses to provide a comprehensive overview of the neural dynamics underlying the age-related deterioration of interlimb coordination involving all four limbs. Theta, alpha and beta oscillations in the frontal, central and parietal regions were analyzed in twenty younger (18-30 years) and nineteen older adults (65-78 years) during a complex interlimb reaction time task. Reaction time was significantly higher in older adults across all conditions, and the discrepancy between both age groups was largest in the most complex movement condition. Older adults demonstrated enhanced beta event-related desynchronization (i.e., the attenuation of beta power), which further increased along with task complexity and was positively linked to behavioral performance. Theta functional connectivity between frontal, central and parietal regions generally increased with movement complexity, irrespective of age group. In general, frontoparietal alpha band functional connectivity tended to be reduced in older versus younger adults, although these contrasts did not survive multiple comparison corrections. Overall, spectral results suggest that enhanced beta desynchronization in older adults reflects a successful compensatory mechanism to cope with increased difficulty during complex interlimb coordination. Functional connectivity results suggest that theta and alpha band connectivity are prone to respectively task- and age-related modulations. Future work could target these spectral and functional connectivity dynamics through noninvasive brain stimulation to potentially improve interlimb coordination in older adults.Copyright © 2022 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…