• Nutrition · Oct 2022

    Comparison of generalized and athletic bioimpedance-based predictive equations for estimating fat-free mass in resistance-trained exercisers.

    • Francesco Campa, Catarina N Matias, Filipe J Teixeira, Joana F Reis, Maria J Valamatos, Giuseppe Coratella, and Cristina P Monteiro.
    • Department for Life Quality Studies, University of Bologna, Rimini, Italy.
    • Nutrition. 2022 Oct 1; 102: 111694.

    ObjectivesThis study aimed to test whether athlete-specific, bioelectrical, impedance-based equations to estimate fat-free mass (FFM) could be more accurate than generalized equations when testing resistance-trained exercisers.MethodsA total of 50 resistance-trained men (age 30.9 ± 7.4 y; body mass index: 25.3 ± 2.2 kg/m2) and 20 men from the general population (age 29.9 ± 9.1 y; body mass index: 22.8 ± 2.4 kg/m2) underwent bioelectrical impedance and dual-energy x-ray absorptiometry (DXA) evaluations. FFM was derived by one bioelectrical impedance-based equation specific for athletes and three generalized equations, all developed with foot-to-hand bioimpedance technologies at a 50 kHz frequency. DXA was the reference method for the FFM assessment.ResultsCompared with DXA, when assessing the resistance-trained participants, the athletic-specific equation had neither mean (-0.89 kg; P = 0.789) or proportional bias (r = -0.104; P = 0.474) with a coefficient of determination equal to R2 = 0.91. In contrast, the three generalized predictive equations overestimated FFM (range, 4.11-5.37 kg; P < 0.05) with R2 ranging from 0.84 to 0.90. The athletic-specific equation underestimated FFM in the general population participants (-2.93 kg; P < 0.05).ConclusionsWhen assessing body composition in resistance-trained exercisers, specific equations for athletes should be preferred to generalized ones to avoid an overestimation in FFM. Furthermore, athlete-specific and generalized formulas cannot be used interchangeably, even when assessing body composition in the general population.Copyright © 2022 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.