• Neuroscience · Sep 2022

    Archery under the (electroencephalography-)hood: Theta-lateralization as a marker for motor learning.

    • Stefan Rampp, Kai Spindler, Gesa Hartwigsen, Christian Scheller, Sebastian Simmermacher, Maximilian Scheer, Christian Strauss, and Julian Prell.
    • Department of Neurosurgery, University Hospital Halle (Saale), Germany; Department of Neurosurgery, University Hospital Erlangen, Germany. Electronic address: Stefan.rampp@uk-halle.de.
    • Neuroscience. 2022 Sep 1; 499: 23-39.

    AbstractAn intrinsic characteristic of the motor system is the preference of one side of the body. Lateralization is found in motor behavior and in the structural and functional correlates of cortical motor networks. While genetic factors have been elucidated as mechanisms leading to such asymmetries, findings in motor learning and experience from clinical experience demonstrate considerable additional plasticity during the lifespan. If and how functional lateralization develops in short timeframes during training of motor skills involving both sides of the body is still largely unclear. In the present exploratory study, we investigate lateralization of theta-, alpha- and beta-band oscillations during training of an ecologically valid skill - archery. We relate lateralization shift to performance improvement and elucidate the underlying cortical areas. To this end, healthy participants without any previous experience in archery underwent intensive training with 100 shots on each of three days. 64-channel electroencephalography was recorded simultaneously during the individual shots. We found that a central-parietal theta lateralization shift to the left immediately before the shot was associated with performance improvement. Lateralization of alpha or beta did not yield a significant association. Importantly, areas of maximum activation were not identical with areas showing the strongest associations with performance improvement. These data suggest that learning a complex bimanual motor skill is associated with a shift of theta-band oscillations to the left in central-parietal areas. The relationship with performance improvement may reflect increased cortical efficiency of task-relevant processing.Copyright © 2022 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.