• Neuroscience · May 2006

    Comparative Study

    Rescue and regeneration of injured peripheral nerve axons by intrathecal insulin.

    • C Toth, V Brussee, J A Martinez, D McDonald, F A Cunningham, and D W Zochodne.
    • Department of Clinical Neurosciences and the Hotchkiss Brain Institute, University of Calgary, Room 168, 3330 Hospital Drive, NW, Calgary, Alberta, Canada T2N 4N1.
    • Neuroscience. 2006 May 12;139(2):429-49.

    AbstractInsulin peptide, acting through tyrosine kinase receptor pathways, contributes to nerve development or repair. In this work, we examined the direction, impact and repertoire of insulin signaling in vivo during peripheral nerve regeneration in rats. First, we demonstrated that insulin receptor is expressed on lumbar dorsal root ganglia neuronal perikarya using immunohistochemistry. Immunoblots and polymerase chain reactions confirmed the presence of both alpha and beta insulin receptor subunits in dorsal root ganglia. In vivo and in vitro assessment of dorsal root ganglion neurons showed preferential localization of insulin receptor to perikaryal sites. In vivo, intrathecal delivery of fluorescein isothiocyanate-labeled insulin identified localization around dorsal root ganglia neurons. The direction and impact of potential insulin signaling was evaluated by concurrently delivering insulin or carrier over a 2 week period using mini-osmotic pumps, either intrathecally, near nerve, or with both deliveries, following a selective sural nerve crush injury. Only intrathecal insulin increased the number and maturity of regenerating sensory sural nerve axons distal to the crush site. As well, only intrathecal insulin rescued retrograde loss of sural axons after crush. In a separate experiment, insulin also rescued retrograde loss and atrophy of deep peroneal, largely motor, axons post-injury. Intrathecal insulin increased the expression of calcitonin-gene-related peptide in regenerating sprouts, increased the number of visualized regenerating fiber clusters, and reduced downregulation of calcitonin-gene-related peptide in dorsal root ganglia neurons. Insulin delivered intrathecally does not appear to influence expression of insulin-like growth factor-1 at dorsal root ganglion neurons or near peripheral nerve injury, but was associated with upregulation of insulin receptor alpha subunit in dorsal root ganglia. Intrathecal insulin delivery was associated with greater recovery of thermal sensation and longer distances to stimulus response with the pinch test following sural nerve crush. Insulin signaling at neuron perikarya can drive distal sensory axon regrowth, rescue retrograde alterations of axons and alter axon peptide expression. Moreover, such actions are associated with upregulation of its own receptor.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.