• Anesthesiology · Feb 2023

    Encapsulation dynamics of neuromuscular blocking drugs by sugammadex.

    • Amir Hossein Irani, Logan Voss, Nicola Whittle, and Jamie W Sleigh.
    • Department of Anesthesia and Pain Medicine, Waikato District Health Board, Hamilton, New Zealand.
    • Anesthesiology. 2023 Feb 1; 138 (2): 152163152-163.

    BackgroundThe clinical actions of sugammadex have been well studied, but the detailed molecular mechanism of the drug encapsulation process has not been systematically documented. The hypothesis was that sugammadex would attract rocuronium and vecuronium via interaction with the sugammadex side-chain "tentacles," as previously suggested.MethodsComputational molecular dynamics simulations were done to investigate docking of sugammadex with rocuronium and vecuronium. To validate these methods, strength of binding was assessed between sugammadex and a heterogeneous group of nine other drugs, the binding affinities of which have been experimentally determined. These observations hinted that high concentrations of unbound sugammadex could bind to propofol, potentially altering its pharmacokinetic profile. This was tested experimentally in in vitro cortical slices.ResultsSugammadex encapsulation of rocuronium involved a sequential progression down a series of metastable states. After initially binding beside the sugammadex molecule (mean ± SD center-of-mass distance = 1.17 ± 0.13 nm), rocuronium then moved to the opposite side to that hypothesized, where it optimally aligned with the 16 hydroxyl groups (distance, 0.82 ± 0.04 nm) before entering the sugammadex cavity to achieve energetically stable encapsulation by approximately 120 ns (distance, 0.35 ± 0.12 nm). Vecuronium formed fewer hydrogen bonds with sugammadex than did rocuronium; hence, it was less avidly bound. For the other molecules, the computational results showed good agreement with the available experimental data, showing a clear bilogarithmic relation between the relative binding free energy and the association constant (R2 = 0.98). Weaker binding was manifest by periodic unbinding. The brain slice results confirmed the presence of a weak propofol-sugammadex interaction.ConclusionsComputational simulations demonstrate the dynamics of neuromuscular blocking drug encapsulation by sugammadex occurring from the opposite direction to that hypothesized and also how high concentrations of unbound sugammadex can potentially weakly bind to other drugs given during general anesthesia.Copyright © 2022, the American Society of Anesthesiologists. All Rights Reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.