-
- K Takahashi, J-S Lin, and K Sakai.
- INSERM U628, Lyon, F-69373, France and Claude Bernard University Lyon 1, 8 Avenue Rockefeller, Lyon Cedex 08, F-69373, France.
- Neuroscience. 2009 Jun 16;161(1):269-92.
AbstractWe recorded 872 single units across the complete sleep-waking cycle in the mouse preoptic area (POA) and basal forebrain (BFB), which are deeply involved in the regulation of sleep and wakefulness (W). Of these, 552 were sleep-active, 96 were waking-active, 106 were active during both waking and paradoxical sleep (PS), and the remaining 118 were state-indifferent. Among the 872, we distinguished slow-wave sleep (SWS)-specific, SWS/PS-specific, PS-specific, W-specific, and W/PS-specific neurons, the last group being further divided into specific tonic type I slow (TI-Ss) and specific tonic type I rapid (TI-Rs) both discharging specifically in association with cortical activation during both W and PS. Both the SWS/PS-specific and PS-specific neurons were distributed throughout a wide region of the POA and BFB, whereas the SWS-specific neurons were mainly located in the middle and ventral half of the POA and adjacent BFB, as were the W-specific and W/PS-specific neurons. At the transition from waking to sleep, the majority of SWS-specific and all SWS/PS-specific neurons fired after the onset of cortical synchronization (deactivation), whereas all W-specific and W/PS-specific neurons showed a significant decrease in firing rate >0.5 s before the onset. At the transition from SWS to W, the sleep-specific neurons showed a significant decrease in firing rate 0.1 s before the onset of cortical activation, while the W-specific and W/PS-specific neurons fired >0.5 s before the onset. TI-Ss neurons were characterized by a triphasic broad action potential, slow single isolated firing, and an antidromic response to cortical stimulation, whereas TI-Rs neurons were characterized by a narrow action potential and high frequency burst discharge in association with theta waves in PS. These data suggest that the forebrain sleep/waking switch is regulated by opposing activities of sleep-promoting (SWS-specific and SWS/PS-specific) and waking-promoting (W-specific and W/PS-specific) neurons, that the initiation of sleep is caused by decreased activity of the waking-promoting neurons (disfacilitation), and that the W/PS-specific neurons are deeply involved in the processes of cortical activation/deactivation.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:

- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.