• Neuroscience · Feb 2008

    Dopamine and cyclic-AMP regulated phosphoprotein-32-dependent modulation of prefrontal cortical input and intercellular coupling in mouse accumbens spiny and aspiny neurons.

    • S-P Onn, M Lin, J-J Liu, and A A Grace.
    • Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA. Onn@bns.pitt.edu
    • Neuroscience. 2008 Feb 6; 151 (3): 802816802-16.

    AbstractThe roles of dopamine and cyclic-AMP regulated phosphoprotein-32 (DARPP-32) in mediating dopamine (DA)-dependent modulation of corticoaccumbens transmission and intercellular coupling were examined in mouse accumbens (NAC) neurons by both intracellular sharp electrode and whole cell recordings. In wild-type (WT) mice bath application of the D2-like agonist quinpirole resulted in 73% coupling incidence in NAC spiny neurons, compared with baseline (9%), whereas quinpirole failed to affect the basal coupling (24%) in slices from DARPP-32 knockout (KO) mice. Thus, D2 stimulation attenuated DARPP-32-mediated suppression of coupling in WT spiny neurons, but this modulation was absent in KO mice. Further, whole cell recordings revealed that quinpirole reversibly decreased the amplitude of cortical-evoked excitatory postsynaptic potentials (EPSPs) in spiny neurons of WT mice, but this reduction was markedly attenuated in KO mice. Bath application of the D1/D5 agonist SKF 38393 did not alter evoked EPSP amplitude in WT or KO spiny neurons. Therefore, DA D2 receptor regulation of both cortical synaptic (chemical) and local non-synaptic (dye coupling) communications in NAC spiny neurons is critically dependent on intracellular DARPP-32 cascades. Conversely, in fast-spiking interneurons, blockade of D1/D5 receptors produced a substantial decrease in EPSP amplitude in WT, but not in KO mice. Lastly, in putative cholinergic interneurons, cortical-evoked disynaptic inhibitory potentials (IPSPs) were attenuated by D2-like receptor stimulation in WT but not KO slices. These data indicate that DARPP-32 plays a central role in 1) modulating intercellular coupling, 2) cortical excitatory drive of spiny and aspiny GABAergic neurons, and 3) local feedforward inhibitory drive of cholinergic-like interneurons within accumbens circuits.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.