• Reg Anesth Pain Med · May 2024

    GFAP palmitoylcation mediated by ZDHHC23 in spinal astrocytes contributes to the development of neuropathic pain.

    • Xiaoqing Fan, Siyu Zhang, Suling Sun, Wenxu Bi, Shuyang Li, Wei Wang, Xueran Chen, and Zhiyou Fang.
    • Hefei Cancer Hospital of CAS; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), Hefei, Anhui, People's Republic of China.
    • Reg Anesth Pain Med. 2024 May 10.

    BackgroundCancer pain has a significant impact on patient's quality of life. Astrocytes play an important role in cancer pain signaling. The direct targeting of astrocytes can effectively suppress cancer pain, however, they can cause many side effects. Therefore, there is an urgent need to identify the specific signaling pathways or proteins involved within astrocytes in cancer pain as targets for treating pain.MethodsA neuropathic cancer pain (NCP) model was established by inoculating mouse S-180 sarcoma cells around the right sciatic nerve in C57BL/6 mice. Spontaneous persistent pain and paw withdrawal thresholds were measured using von Frey filaments. The NCP spinal cord dorsal horn (L4-L6) and mouse astrocyte cell line MA-C were used to study protein palmitoylation using acyl-biotin exchange, real-time polymerase chain reaction, ELISA, western blotting, and immunofluorescent staining.ResultsIn a cancer pain model, along with tumor growth, peripheral nerve tissue invasion, and cancer pain onset, astrocytes in the dorsal horn of the spinal cord were activated and palmitoyltransferase ZDHHC23 expression was upregulated, leading to increased palmitoylation levels of GFAP and increased secretion of inflammatory factors, such as (C-X-C motif) ligand (CXCL)10 (CXCL-10), interleukin 6, and granulocyte-macrophage colony-stimulating factor. These factors in turn activate astrocytes by activating the signal transducer and activator of transcription 3 (STAT3) signaling pathway. A competitive peptide targeting GFAP palmitoylations was designed to effectively alleviate morphine tolerance in cancer pain treatment as well as cancer pain signaling and inflammatory factor secretion.ConclusionsIn a rodent model, targeting GFAP palmitoylation appears to be an effective strategy in relieving cancer pain and morphine tolerance. Human translational research is warranted.© American Society of Regional Anesthesia & Pain Medicine 2023. Re-use permitted under CC BY-NC. No commercial re-use. Published by BMJ.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.