• Neuroscience · Oct 2007

    Endurance exercise promotes cardiorespiratory rehabilitation without neurorestoration in the chronic mouse model of parkinsonism with severe neurodegeneration.

    • M Al-Jarrah, K Pothakos, L Novikova, I V Smirnova, M J Kurz, L Stehno-Bittel, and Y-S Lau.
    • Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, KS 66160, USA.
    • Neuroscience. 2007 Oct 12; 149 (1): 283728-37.

    AbstractPhysical rehabilitation with endurance exercise for patients with Parkinson's disease has not been well established, although some clinical and laboratory reports suggest that exercise may produce a neuroprotective effect and restore dopaminergic and motor functions. In this study, we used a chronic mouse model of Parkinsonism, which was induced by injecting male C57BL/6 mice with 10 doses of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (25 mg/kg) and probenecid (250 mg/kg) over 5 weeks. This chronic parkinsonian model displays a severe and persistent loss of nigrostriatal neurons, resulting in robust dopamine depletion and locomotor impairment in mice. Following the induction of Parkinsonism, these mice were able to sustain an exercise training program on a motorized rodent treadmill at a speed of 18 m/min, 0 degrees of inclination, 40 min/day, 5 days/week for 4 weeks. At the end of exercise training, we examined and compared their cardiorespiratory capacity, behavior, and neurochemical changes with that of the probenecid-treated control and sedentary parkinsonian mice. The resting heart rate after 4 weeks of exercise in the chronic parkinsonian mice was significantly lower than the rate before exercise, whereas the resting heart rate at the beginning and 4 weeks afterward in the control or sedentary parkinsonian mice was unchanged. Exercised parkinsonian mice also recovered from elevated electrocardiogram R-wave amplitude that was detected in the parkinsonian mice without exercise for 4 weeks. The values of oxygen consumption, carbon dioxide production, and body heat generation in the exercised parkinsonian mice before and during the Bruce maximal exercise challenge test were all significantly lower than that of their sedentary counterparts. Furthermore, the exercised parkinsonian mice demonstrated a greater mass in the left ventricle of the heart and an increased level of citrate synthase activity in the skeletal muscles. The amphetamine-induced, dopamine release-dependent locomotor activity was markedly inhibited in the sedentary parkinsonian mice and was also inhibited in the exercised parkinsonian mice. Finally, neuronal recovery from the loss of nigrostriatal tyrosine hydroxylase expression and dopamine levels in the severe parkinsonian mice after exercise was not evident. Taken all together, these data suggest that 4 weeks of treadmill exercise promoted physical endurance, resulting in cardiorespiratory and metabolic adaptations in the chronic parkinsonian mice with severe neurodegeneration without demonstrating a restorative potential for the nigrostriatal dopaminergic function.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.