• Neuroscience · Nov 2010

    Complex role of zinc in methamphetamine toxicity in vitro.

    • E Aizenman, M C McCord, R A Saadi, K A Hartnett, and K He.
    • Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA. redox@pitt.edu
    • Neuroscience. 2010 Nov 24; 171 (1): 313931-9.

    AbstractMethamphetamine is a drug of abuse that can induce oxidative stress and neurotoxicity to dopaminergic neurons. We have previously reported that oxidative stress promotes the liberation of intracellular Zn(2+) from metal-binding proteins, which, in turn, can initiate neuronal injurious signaling processes. Here, we report that methamphetamine mobilizes Zn(2+) in catecholaminergic rat pheochromocytoma (PC12) cells, as measured by an increase in Zn(2+)-regulated gene expression driven by the metal response element transcription factor-1. Moreover, methamphetamine-liberated Zn(2+) was responsible for a pronounced enhancement in voltage-dependent K(+) currents in these cells, a process that normally accompanies Zn(2+)-dependent cell injury. Overnight exposure to methamphetamine induced PC12 cell death. This toxicity could be prevented by the cell-permeant zinc chelator N,N,N', N'-tetrakis(2-pyridylmethyl)-ethylenediamine (TPEN), and by over-expression of the Zn(2+)-binding protein metallothionein 3 (MT3), but not by tricine, an extracellular Zn(2+) chelator. The toxicity of methamphetamine to PC12 cells was enhanced by the presence of co-cultured microglia. Remarkably, under these conditions, TPEN no longer protected but, in fact, dramatically exacerbated methamphetamine toxicity, tricine again being without effect. Over-expression of MT3 in PC12 cells did not mimic these toxicity-enhancing actions of TPEN, suggesting that the chelator affected microglial function. Interestingly, P2X receptor antagonists reversed the toxicity-enhancing effect of TPEN. As such, endogenous levels of intracellular Zn(2+) may normally interfere with the activation of P2X channels in microglia. We conclude that Zn(2+) plays a significant but complex role in modulating the cellular response of PC12 cells to methamphetamine exposure in both the absence and presence of microglia.Copyright © 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.