• J Neuroimaging · Apr 2024

    Detection of pathological contrast enhancement with synthetic brain imaging from quantitative multiparametric MRI.

    • Graziella Donatelli, Gianmichele Migaleddu, Matteo Cencini, Paolo Cecchi, Claudio D'Amelio, Luca Peretti, Guido Buonincontri, Michela Tosetti, Mauro Costagli, and Mirco Cosottini.
    • Neuroradiology Unit, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy.
    • J Neuroimaging. 2024 Apr 8.

    Background And PurposeWe aimed to test whether synthetic T1-weighted imaging derived from a post-contrast Quantitative Transient-state Imaging (QTI) acquisition enabled revealing pathological contrast enhancement in intracranial lesions.MethodsThe analysis included 141 patients who underwent a 3 Tesla-MRI brain exam with intravenous contrast media administration, with the post-contrast acquisition protocol comprising a three-dimensional fast spoiled gradient echo (FSPGR) sequence and a QTI acquisition. Synthetic T1-weighted images were generated from QTI-derived quantitative maps of relaxation times and proton density. Two neuroradiologists assessed synthetic and conventional post-contrast T1-weighted images for the presence and pattern of pathological contrast enhancement in intracranial lesions. Enhancement volumes were quantitatively compared.ResultsUsing conventional imaging as a reference, synthetic T1-weighted imaging was 93% sensitive in revealing the presence of contrast enhancing lesions. The agreement for the presence/absence of contrast enhancement was almost perfect both between readers (k = 1 for both conventional and synthetic imaging) and between sequences (k = 0.98 for both readers). In 91% of lesions, synthetic T1-weighted imaging showed the same pattern of contrast enhancement visible in conventional imaging. Differences in enhancement pattern in the remaining lesions can be due to the lower spatial resolution and the longer acquisition delay from contrast media administration of QTI compared to FSPGR. Overall, enhancement volumes appeared larger in synthetic imaging.ConclusionsQTI-derived post-contrast synthetic T1-weighted imaging captures pathological contrast enhancement in most intracranial enhancing lesions. Further comparative studies employing quantitative imaging with higher spatial resolution is needed to support our data and explore possible future applications in clinical trials.© 2024 The Authors. Journal of Neuroimaging published by Wiley Periodicals LLC on behalf of American Society of Neuroimaging.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.