-
- H Abrahám, B Czéh, E Fuchs, and L Seress.
- Central Electron Microscopic Laboratory, University of Pécs, Faculty of Medicine, Szigeti u. 12, P.O. Box. 99, 7643 Pécs, Hungary.
- Neuroscience. 2005 Jan 1; 136 (1): 231240231-40.
AbstractCocaine- and amphetamine-regulated transcript peptide mRNA was discovered in the rat striatum following cocaine and amphetamine administration. Since both psychostimulants elicit memory-related effects, localization of cocaine- and amphetamine-regulated transcript peptide in the hippocampal formation may have functional importance. Previous studies demonstrated different cellular localizations of cocaine- and amphetamine-regulated transcript peptide in humans and in rodents. Mossy cells were cocaine- and amphetamine-regulated transcript-positive in the human dentate gyrus, whereas granule cells contained this peptide in the rat. In the present study, the localization of cocaine- and amphetamine-regulated transcript peptide was examined using immunohistochemistry in the hippocampal formation of the rhesus monkey (Macaca mulatta), the common marmoset monkey (Callithrix jacchus) and in the tree shrew (Tupaia belangeri). In these species principal neurons of the hippocampal formation were cocaine- and amphetamine-regulated transcript-immunoreactive. In both monkeys and tree shrews, mossy cells of the hilus were cocaine- and amphetamine-regulated transcript-positive whereas granule cells of the dentate gyrus were cocaine- and amphetamine-regulated transcript-negative. The dense cocaine- and amphetamine-regulated transcript-immunoreactive axonal plexus of the associational pathway outlined the inner one-third of the dentate molecular layer. In the hippocampus of the tree shrew and marmoset monkey, a subset of CA3 pyramidal cells were cocaine- and amphetamine-regulated transcript-immunoreactive. In the marmoset monkey, cocaine- and amphetamine-regulated transcript labeling was found only in layer V pyramidal cells of the entorhinal cortex, while in the rhesus monkey, pyramidal cells of layers II and III were cocaine- and amphetamine-regulated transcript-immunopositive. Our results show that cocaine- and amphetamine-regulated transcript positive neurons in the dentate gyrus of non-human primates are similar to that of the human. Furthermore, in the hippocampal formation of the tree shrew similar cocaine- and amphetamine-regulated transcript-immunoreactive cell-types were observed as in monkeys, supporting their evolutionary relationship with primates. Mossy cells and granule cells are members of a mutual excitatory intrahippocampal circuitry, therefore cocaine- and amphetamine-regulated transcript-immunoreactivity of these neurons in primates and rodents suggests that psychostimulants cocaine and amphetamine may induce memory-related effects at different points of the same excitatory circuitry in the hippocampal formation.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:

- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.