• World Neurosurg · Jan 2025

    Quantitative Neuroanatomical measurement on Photogrammetric model: Validation study.

    • Amedeo Piazza, Jacopo Bellomo, Sergio Corvino, Edoardo Agosti, Simona Serioli, Alice Campeggi, Francesco Corrivetti, Luca Regli, Carlo Serra, and Matteo de Notaris.
    • Department of Neurosurgery, Sapienza University of Rome, Rome, Italy; Laboratory of Neuroscience, European Biomedical Research Institute of Salerno Foundation, Salerno, Italy.
    • World Neurosurg. 2025 Jan 6; 194: 123574123574.

    ObjectiveTo examine and compare the accuracy of measurements obtained from photogrammetric models versus direct measurements taken on dry skulls, with the aim to verify the feasibility of photogrammetry for quantitative analysis in microsurgical neuroanatomy.MethodsTwo dry human skulls were used. Each was scanned using the dual camera system of a smartphone The selected photos were separately processed using 2 different softwares to create three-dimensional models. Subsequently, 41 anatomical measurements (both linear and curvilinear) based on common anatomical landmarks were taken both directly on dry skulls and on photogrammetric models and compared. Analyzed factors included measurement error, intrarater and interrater reliability, and intermodality agreement.ResultsFour photogrammetric models were created. Analysis revealed similar errors when comparing photogrammetric and direct measurements. Measurements from digital models exhibited robust reliability among repeated measures and different observers, supported by very high intraclass correlation coefficient values. Mean measurement difference between Agisoft Metashape software-generated models and direct measurement was 0.01 cm with no systematic bias observed. Conversely, the Metascan app-derived models showed a mean measurement difference of -0.35 cm compared with direct measurement, displaying good agreement for smaller measurements and a systematic proportional bias with increasing measurement size.ConclusionsTwo photogrammetric models were validated as quantitative analysis techniques for laboratory neuroanatomical studies, showing acceptable measurement error, high intrarater and interrater reliability, and good to very good agreement compared with direct measurement on dry skulls, replacing expensive and time-consuming methods such as computed tomography scans and neuronavigation systems.Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.