-
- Pietro Arina, Davide Ferrari, Nicholas Tetlow, Amy Dewar, Robert Stephens, Daniel Martin, Ramani Moonesinghe, Vasa Curcin, Mervyn Singer, John Whittle, and Evangelos B Mazomenos.
- Bloomsbury Institute of Intensive Care Medicine, University College London, London, UK.
- Anaesthesia. 2025 Jan 8.
IntroductionUnderstanding 1-year mortality following major surgery offers valuable insights into patient outcomes and the quality of peri-operative care. Few models exist that predict 1-year mortality accurately. This study aimed to develop a predictive model for 1-year mortality in patients undergoing complex non-cardiac surgery using a novel machine-learning technique called multi-objective symbolic regression.MethodsA single-institution database of patients undergoing major elective surgery with previous cardiopulmonary exercise testing was divided into three datasets: pre-operative clinical data; cardiorespiratory and physiological data; and combined. A multi-objective symbolic regression model was developed and compared against existing models. Model performance was evaluated using the F1 score. Shapley additive explanations analysis was used to identify the major contributors to model performance.ResultsFrom 2145 patients in the database, 1190 were included, with 952 in the training dataset and 238 in the test dataset. Median (IQR [range]) age was 71 (61-79 [45-89]) years and 825 (69%) were male. The multi-objective symbolic regression model demonstrated robust consistency with an F1 score of 0.712. Shapley additive explanations analysis indicated that ventilatory equivalents for carbon dioxide, oxygen at peak exercise and BMI influenced model performance most significantly, surpassing surgery type and named comorbidities.DiscussionThis study confirms the feasibility of developing a multi-objective symbolic regression-based model for predicting 1-year postoperative mortality in a mixed non-cardiac surgical population. The model's strong performance underscores the critical role of physiological data, particularly cardiorespiratory fitness, in surgical risk assessment and emphasises the importance of pre-operative optimisation to identify and manage high-risk patients. The multi-objective symbolic regression model demonstrated high sensitivity and a good F1 score, highlighting its potential as an effective tool for peri-operative risk prediction.© 2025 The Author(s). Anaesthesia published by John Wiley & Sons Ltd on behalf of Association of Anaesthetists.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:

- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.