• Acta Anaesthesiol Scand · Aug 2007

    Low antibiotic resistance rates in Staphylococcus aureus, Escherichia coli and Klebsiella spp but not in Enterobacter spp and Pseudomonas aeruginosa: a prospective observational study in 14 Swedish ICUs over a 5-year period.

    • H Hanberger, L G Burman, O Cars, M Erlandsson, H Gill, L E Nilsson, D Nordlinder, S M Walther, and ICU STRAMA Study Group.
    • Faculty of Health Sciences, Linköpings Universitet, and Swedish Institute for Infectious Disease Control, Stockholm, Sweden. hakha@imk.liu.se
    • Acta Anaesthesiol Scand. 2007 Aug 1;51(7):937-41.

    BackgroundIntensive care units (ICUs) are hot zones for emergence and spread of antibiotic resistance because of frequent invasive procedures, antibiotic usage and transmission of bacteria. We report prospective data on antibiotic use and bacterial resistance from 14 academic and non-academic ICUs, participating in the ICU-STRAMA programme 1999-2003.MethodsThe quantity of antibiotics delivered to each ICU was calculated as defined daily doses per 1,000 occupied bed days (DDD(1,000)). Specimens for culture were taken on clinical indications and only initial isolates were considered. Species-related breakpoints according to the Swedish Reference Group for Antibiotics were used. Antibiotic resistance was defined as the sum of intermediate and resistant strains.ResultsMean antibiotic use increased from 1,245 DDD(1,000) in 1999 to 1,510 DDD(1,000) in 2003 (P = 0.11 for trend). Of Staphylococcus aureus, 0-1.8% were methicillin resistant (MRSA). A presumptive extended spectrum beta-lactamase (ESBL) phenotype was found in <2.4% of Escherichia coli, based on cefotaxime susceptibility, except a peak in 2002 (4.6%). Cefotaxime resistance was found in 2.6-4.9% of Klebsiella spp. Rates of resistance among Enterobacter spp. to cefotaxime (20-33%) and among Pseudomonas aeruginosa to imipenem (22-33%) and ciprofloxacin (5-21%) showed no time trend.ConclusionMRSA and cefotaxime-resistant E. coli and Klebsiella spp strains were few despite high total antibiotic consumption. This may be the result of a slow introduction of resistant strains into the ICUs, and good infection control. The cause of imipenem and ciprofloxacin resistance in P. aeruginosa could reflect the increased consumption of these agents plus spread of resistant clones.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.