• Anesthesiology · Mar 2004

    Reactive oxygen species precede protein kinase C-delta activation independent of adenosine triphosphate-sensitive mitochondrial channel opening in sevoflurane-induced cardioprotection.

    • R Arthur Bouwman, René J P Musters, Brechje J van Beek-Harmsen, Jaap J de Lange, and Christa Boer.
    • Department of Anesthesiology and the Laboratory for Physiology, Vrije Universiteit Medical Center-Institute for Cardiovascular Research Vrije Universiteit, Amsterdam, The Netherlands.
    • Anesthesiology. 2004 Mar 1;100(3):506-14.

    BackgroundIn the current study, the authors investigated the distinct role and relative order of protein kinase C (PKC)-delta, adenosine triphosphate-sensitive mitochondrial K+ (mito K+(ATP)) channels, and reactive oxygen species (ROS) in the signal transduction of sevoflurane-induced cardioprotection and specifically addressed their mechanistic link.MethodsIsolated rat trabeculae were preconditioned with 3.8% sevoflurane and subsequently subjected to an ischemic protocol by superfusion of trabeculae with hypoxic, glucose-free buffer (40 min) followed by 60 min of reperfusion. In addition, the acute affect of sevoflurane on PKC-delta and PKC-epsilon translocation and nitrotyrosine formation was established with use of immunofluorescent analysis. The inhibitors chelerythrine (6 microM), rottlerin (1 microM), 5-hydroxydecanoic acid sodium (100 microM), and n-(2-mercaptopropionyl)-glycine (300 microM) were used to study the particular role of PKC, PKC-delta, mito K+(ATP), and ROS in sevoflurane-related intracellular signaling.ResultsPreconditioning of trabeculae with sevoflurane preserved contractile function after ischemia. This contractile preservation was dependent on PKC-delta activation, mito K+(ATP) channel opening, and ROS production. In addition, on acute stimulation by sevoflurane, PKC-delta but not PKC-epsilon translocated to the sarcolemmal membrane. This translocation was inhibited by PKC inhibitors and ROS scavenging but not by inhibition of mito K+(ATP) channels. Furthermore, sevoflurane directly induced nitrosylation of sarcolemmal proteins, suggesting the formation of peroxynitrite.ConclusionsIn sevoflurane-induced cardioprotection, ROS release but not mito K+(ATP) channel opening precedes PKC-delta activation. Sevoflurane induces sarcolemmal nitrotyrosine formation, which might be involved in the recruitment of PKC-delta to the cell membrane.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.