• Anesthesiology · Oct 2006

    Adding bupivacaine to high-potassium cardioplegia improves function and reduces cellular damage of rat isolated hearts after prolonged, cold storage.

    • James D Ross, Richard Ripper, William R Law, Malek Massad, Patricia Murphy, Lucas Edelman, Beth Conlon, Douglas L Feinstein, June W Palmer, Guido DiGregorio, and Guy L Weinberg.
    • Department of Physiology and Biophysics, University of Illinois College of Medicine at Chicago, and Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA.
    • Anesthesiology. 2006 Oct 1; 105 (4): 746-52.

    BackgroundBupivacaine retards myocardial acidosis during ischemia. The authors measured function of rat isolated hearts after prolonged storage to determine whether bupivacaine improves cardiac protection compared with standard cardioplegia alone.MethodsAfter measuring cardiac function on a Langendorff apparatus, hearts were perfused with cardioplegia alone (controls), cardioplegia containing 500 microm bupivacaine, or cardioplegia containing 2 mm lidocaine; were stored at 4 degrees C for 12 h; and were then reperfused. Heart rate and left ventricular developed pressures were measured for 60 min. Maximum positive rate of change in ventricular pressure, oxygen consumption, and lactate dehydrogenase release were also measured.ResultsAll bupivacaine-treated, four of five lidocaine-treated, and no control hearts beat throughout the 60-min recovery period. Mean values of heart rate, left ventricular developed pressure, maximum positive rate of change in ventricular pressure, rate-pressure product, and efficiency in bupivacaine-treated hearts exceeded those of the control group (P < 0.001 at 60 min for all). Mean values of the lidocaine group were intermediate. Oxygen consumption of the control group exceeded the other groups early in recovery, but not at later times. Lactate dehydrogenase release from the bupivacaine group was less than that from the control group (P < 0.001) but did not differ from baseline.ConclusionsAdding bupivacaine to a depolarizing cardioplegia solution reduces cell damage and improves cardiac function after prolonged storage. Metabolic inhibition may contribute to this phenomenon, which is not entirely explained by sodium channel blockade.

      Pubmed     Full text   Copy Citation  

      Add institutional full text...


    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..


Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
988,657 articles already indexed!

We guarantee your privacy. Your email address will not be shared.