• Neuroscience · Jan 2002

    The role of mu-opioid receptors in inflammatory hyperalgesia and alpha 2-adrenoceptor-mediated antihyperalgesia.

    • H Mansikka, L Zhou, D M Donovan, A Pertovaara, and S N Raja.
    • Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA. heikki.mansikka@tyks.fi
    • Neuroscience. 2002 Jan 1;113(2):339-49.

    AbstractThe purpose of the present study was to investigate the role of mu-opioid receptor in inflammatory hyperalgesia in intact and in spinalized animals and the interaction between mu-opioid and alpha2-adrenergic receptor in acute pain and inflammatory hyperalgesia. Behavioral responses to mechanical and heat stimuli were studied in mu-opioid receptor knockout mice and wildtype control mice. Thermal nociception was evaluated by measuring paw withdrawal latencies to radiant heat applied to the hindpaws. Mechanical nociception was measured by von Frey monofilament applications to the hindpaws. Intraplantar carrageenan-induced (1 mg/40 microl) mechanical and heat hyperalgesia were compared in micro-opioid knockout and wildtype mice. The effect of systemically administered alpha2-adrenergic receptor agonist dexmedetomidine (1-10 microg/kg) was evaluated on mechanical and thermal withdrawal responses under normal and inflammatory state in knockout and wildtype mice. The role of micro-opioid receptor in descending modulation of nociception was studied by assessing mechanical and heat withdrawal responses before and after mid-thoracic spinalization. Withdrawal responses to radiant heat and von Frey monofilaments were similar in mu-opioid knockout and wildtype mice before and after the carrageenan induced hindpaw inflammation. Also, antinociceptive effects of dexmedetomidine in thermal and mechanical nociceptive tests were similar before carrageenan induced hindpaw inflammation. However, the potency of dexmedetomidine was significantly reduced in carrageenan-induced mechanical hyperalgesia in mu-opioid knockout mice compared to the wildtype control mice. Thermal and mechanical withdrawal responses were similar between mu-opioid knockout and wildtype mice before and after mid-thoracic spinalization. Our observations indicate that the mu-opioid receptors do not play an important role in alpha2-adrenergic receptor agonist-mediated acute antinociception. In addition, micro-opioid receptors are not tonically involved in the modulation of inflammation-induced mechanical and thermal hyperalgesia, and the supraspinal control of spinal reflexes. However, in the presence of inflammation, mu-opioid receptors play an important role in the antihyperalgesic actions of an alpha2-adrenergic receptor agonist.Copyright 2002 IBRO

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.